

Curator HACKER MONTHLY is the print magazine version

Lim Cheng Soon of Hacker News — news.ycombinator.com, a social
news website wildly popular among programmers and

Contributors startup founders. The submission guidelines state that

David Anderson content can be “anything that gratifies one’s intel-

Scott Eberhardt lectual curiosity.” Every month, we select from the

Peiter Buick top voted articles on Hacker News and print them in

Pat Shaughnessy magazine format. For more, visit hackermonthly.com.

Nick Johnson

Elrr;;/gzrndMintem Advertising Published by

Timothy Daly ads@hackermonthly.com Netizens Media

James Tauber 46, Taylor Road,

Lisa Zhang Contact 11600 Penang,
contact@hackermonthly.com Malaysia.

Proofreaders

Emily Griffin

Sigmarie Soto

Printer

MagCloud

How Airplanes Fly

-

A

MONTHLY Issue21 February 2012

Cover Photography: Dave Morrow’s Custom Creations

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Contents

FEATURES \\ H oy "

Y oy v
o4+ How Airplanes Fly .

By DAVID ANDERSON & SCOTT EBERHARDT

DESIGN

20 The Messy Art of UX Sketching
By PEITER BUICK

PROGRAMMING

30 Never Create Ruby Strings Longer
Than 23 Characters
By PAT SHAUGHNESSY

38 Fountain Codes
By NICK JOHNSON

42 Unfortunate Python
By IAN WARD

4 Tips for Remote Unix Work
By BRANDON MINTERN

55 Being a Great Coder
By TIMOTHY DALY

SPECIAL

56 Why 13th Chords
By JAMES TAUBER

ss Elevator Algorithms
By LISA ZHANG

For links to Hacker News dicussions, visit hackermonthly.com/issue-21

http://hackermonthly.com/issue-21

| Nirblar
~TI0W | Pla

o™

”,

By DAVID ANDERSON & ‘S“C C

LMOST EVERYONE TODAY
has flown in an
airplane. Many ask
the simple ques-

tion “what makes an airplane fly?” The
answer one frequently gets is mislead-
ing and often just plain wrong. As an
example, most descriptions of the
physics of lift fixate on the shape of the
wing (i.e. airfoil) as the key factor in
understanding lift. The wings in these
descriptions have a bulge on the top

so that the air must travel farther over
the top than under the wing. Yet we all
know that wings fly quite well upside

down where the shape of the wing
is inverted. To cover for this paradox
we sometimes see a description for
inverted flight that is different than for
normal flight. In reality the shape of
the wing has little to do with how lift
is generated and everything to do with
efficiency in cruise and stall character-
istics. Any description that relies on the
shape of the wing is wrong.

Let us look at two examples of
successful wings that clearly vio-
late the descriptions that rely on the
shape of the wing. The first example
is a very old design. Figure 1 shows a

4 FEATURES

http://flickr.com/photos/daves-f-stop/5516483143

Figure 1. Curtis 1911 model D type IV pusher

Figure 2. Whitcomb Supercritical Airfoil

photograph of the Curtis 1911 model
D type IV pusher. Clearly the air trav-
els the same distance over the top and
the bottom of the wing. Yet this air-
plane flew and was the second airplane
purchased by the US Army in 1911.

The second example of a wing that
violates the idea that lift is depen-
dent on the shape of the wing is of a
very modern wing. Figure 2 shows the
profile of the Whitcomb Supercritical
Airfoil (NASA/Langley SC(2)-0714).
This wing is basically flat on top with
the curvature on the bottom. Though
its shape may seem contrary to the
popular view of the shape of wings,
this airfoil is the foundation of the
wings modern airliners.

The emphasis on the wing shape in
many explanations of lift is based on
the Principle of Equal Transit Times.
This assertion mistakenly states the
air going around a wing must take the
same length of time, whether going

over or under, to get to the trailing
edge. The argument goes that since

the air goes farther over the top of the
wing it has to go faster, and with Ber-
noulli’s principle we have lift. Knowing
that equal transit times is not defend-
able the statement is often softened to
say that since the air going over the top
must go farther it must to faster. But,
this is again just a variation on the idea
of equal transit times. In reality, equal
transit times holds only for a wing
without lift. Figure 3 shows a simula-
tion of the airflow around a wing with

lift.

— —
| —

— —3

g e

c:; T

;:f,_": W—@, —

— =3 = ==

_ 3 == ==

| — — [S— —

| — — 3 | S—

Figure 3 Air over a wing with lift.

The Bernoulli equation is a state-
ment of the conservation of energy.
It is correct, but not applicable to the
description of lift on a real wing. The
wings of an 800,000 pound airplane
are doing a great deal of work to keep
the airplane in the air. They are adding
a large amount of energy to the air.
One of the requirements of the appli-
cation of the Bernoulli principle is that
no energy is added to the system. Thus,
the speed and pressure of the air above
a real wing in flight are not related by
the Bernoulli principle. Also, descrip-
tions of lift that evoke the Bernoulli

http://flickr.com/photos/daves-f-stop/5516483143

principle depend on the shape of the
wing. As already stated, the shape of
the wing affects the efficiency and stall
characteristics of the wing but not the
lift. That is left to the angle of attack
and speed.

Newton’s laws and lift

So, how does a wing generate lift?
To begin to understand lift we must
review Newton’s first and third laws.
(We will introduce Newton’s second
law a little later.) Newton’s first law
states:

A body at rest will remain at rest,

or a body in motion will continue in
straight-line motion unless subjected to
an external applied force.

That means, if one sees a bend in the
flow of air, or if air originally at rest
is accelerated into motion, a force is
acting on it.

Newton’s third law states that:

For every action there is an equal and
opposite reaction.

As an example, an object sitting on
a table exerts a force on the table (its
weight) and the table puts an equal
and opposite force on the object to
hold it up. In order to generate lift a
wing must do something to the air.
What the wing does to the air is the
action while lift is the reaction.

Let's compare two figures used
to show streamlines over a wing. In
figure 4 the air comes straight at the

wing, bends around it, and then leaves
straight behind the wing. We have all
seen similar pictures, even in flight
manuals. But, the air leaves the wing
exactly as it appeared ahead of the
wing. There is no net action on the
air so there can be no lift! Figure 5
shows the streamlines, as they should
be drawn. The air passes over the wing
and is bent down. Newton’s first law
says that there must be a force on the
air to bend it down (the action). New-
ton’s third law says that there must be
an equal and opposite force (up) on
the wing (the reaction). To generate lift
a wing must divert lots of air down.
N

\~

Figure 4. Common depiction of airflow over a
wing. This wing has no lift.

N
‘

— e ——

Figure 5. True airflow over a wing with lift
showing upwash and downwash.

The lift of a wing is equal to the
change in momentum of the air it is
diverting down. Momentum is the
product of mass and velocity (mv).
The most common form of Newton’s
second law is F= ma, or force equal
mass times acceleration. The law in
this form gives the force necessary to
accelerate an object of a certain mass.
An alternate form of Newton’s second
law can be written:

6 FEATURES

— R

Direction and speed
of wing

Approximate direction and
magnitude of downwash as
seen by the pilot

h

Approximate direction
and magnitude of
downwash as seen by
observer on the ground

Figure 6. How downwash appears to a pilot and to an observer on the ground.

The lift of a wing is proportional to the
amount of air diverted down times the
vertical velocity of that air.

It is that simple. For more lift the
wing can either divert more air (mass),
increase its vertical velocity or a com-
bination of the two. This vertical veloc-
ity behind the wing is the vertical
component of the “downwash.” Figure
6 shows how the downwash appears
to the pilot (or in a wind tunnel).

The figure also shows how the down-
wash appears to an observer on the
ground watching the wing go by. To
the pilot the air is coming off the wing
at roughly the angle of attack and at
about the speed of the airplane. To the
observer on the ground, if he or she
could see the air, it would be coming
off the wing almost vertically at a rela-
tively slow speed. The greater the angle
of attack of the wing the greater the
vertical velocity of the air. Likewise, for
a given angle of attack, the greater the
speed of the wing the greater the verti-
cal velocity of the air. Both the increase

in the speed and the increase of the
angle of attack increase the length of
the vertical velocity arrow. It is this
vertical velocity that gives the wing lift.

As stated, an observer on the ground
would see the air going almost straight
down behind the plane. This can be
demonstrated by observing the tight
column of air behind a propeller, a
household fan, or under the rotors of
a helicopter; all of which are rotating
wings. If the air were coming off the
blades at an angle the air would pro-
duce a cone rather than a tight column.
The wing develops lift by transferring
momentum to the air. For straight and
level flight this momentum eventually
strikes the earth. If an airplane were
to fly over a very large scale, the scale
would weigh the airplane.

Let us do a back-of-the-envelope
calculation to see how much air a
wing might divert. Take for example
a Cessna 172 that weighs about 2300
Ib (1045 kg). Traveling at a speed of
140 mph (220 km/h), and assuming an
effective angle of attack of 5 degrees,

we get a vertical velocity for the air of
about 11.5 mph (18 km/h) right at the
wing. If we assume that the average
vertical velocity of the air diverted is
half that value we calculate from New-
ton’s second law that the amount of
air diverted is on the order of 5 ton/s.
Thus, a Cessna 172 at cruise is divert-
ing about five times its own weight in
air per second to produce lift. Think
how much air is diverted by a 250-ton
Boeing 777.

Diverting so much air down is a
strong argument against lift being
just a surface effect (that is only a
small amount of air around the wing
accounts for the lift), as implied by the
popular explanation. In fact, in order
to divert 5 ton/sec the wing of the
Cessna 172 must accelerate all of the
air within 18 feet (7.3 m) above the
wing. One should remember that the
density of air at sea level is about 2 Ib
per cubic yard (about 1kg per cubic
meter). Figure 7 illustrates the effect
of the air being diverted down from a
wing. A huge hole is punched through
the fog by the downwash from the air-
plane that has just flown over it.

Figure 7.
Downwash
and wing vorti-
ces in the fog.

So how does a thin wing divert
so much air? When the air is bent
around the top of the wing, it pulls on
the air above it accelerating that air
downward. Otherwise there would be
voids in the air above the wing. Air is
pulled from above. This pulling causes
the pressure to become lower above
the wing. It is the acceleration of the
air above the wing in the downward
direction that gives lift. (Why the wing
bends the air with enough force to gen-
erate lift will be discussed in the next
section.)

Normally, one looks at the air flowing
over the wing in the frame of refer-
ence of the wing. In other words, to the
pilot the air is moving and the wing is
standing still. We have already stated
that an observer on the ground would
see the air coming off the wing almost
vertically. But what is the air doing
below the wing? Figure 8 shows an
instantaneous snapshot of how air mol-
ecules are moving as a wing passes by.
Remember in this figure the air is ini-
tially at rest and it is the wing moving.
Arrow “1” will become arrow “2” and
so on. Ahead of the leading edge, air
is moving up (upwash). At the trailing
edge, air is diverted down (downwash).
Over the top the air is accelerated
towards the trailing edge. Underneath,
the air is accelerated forward slightly.
Far behind the wing the air is going
straight down.

8 FEATURES

LI R AR
S Nwm T T
- - . oy K o

So, why does the air follow this pat-
tern? First, we have to bear in mind that
air is considered an incompressible fluid
for low-speed flight. That means that
it cannot change its volume and that
there is a resistance to the formation
of voids. Now the air has been acceler-
ated over the top of the wing by of the
reduction in pressure. This draws air
from in front of the wing and expels if
back and down behind the wing. This
air must be compensated for, so the air
shifts around the wing to fill in. This is
similar to the circulation of the water
around a canoe paddle. This circulation
around the wing is no more the driv-
ing force for the lift on the wing than
is the circulation in the water drives
the paddle. Though, it is true that if
one is able to determine the circulation
around a wing the lift of the wing can
be calculated. Lift and circulation are
proportional to each other.

One observation that can be made
from Figure 8 is that the top surface of
the wing does much more to move the
air than the bottom. So the top is the
more critical surface. Thus, airplanes
can carry external stores, such as drop
tanks, under the wings but not on top
where they would interfere with lift.
That is also why wing struts under the

Figure 8. Direction of air movement around a
wing as seen by an observer on the ground.

wing are common but struts on the top
of the wing have been historically rare.
A strut, or any obstruction, on the top
of the wing would interfere with the

lift.

Air Bending Over a Wing

As always, simple statements often
result in more questions. One natu-

ral question is why does the air bend
around the wing? This question is
probably the most challenging question
in understanding flight and it is one of
the key concepts.

Let us start by first looking at a
simple demonstration. Run a small
stream of water from a faucet and
bring a horizontal water glass over to
it until it just touches the water, as in
Figure 9. As in the figure, the water will
wrap partway around the glass. From
Newton’s first law we know that for
the flow of water to bend there must
be a force on it. The force is in the
direction of the bend.

From Newton’s third law we know
that there must be an equal and
opposite force acting on the glass.

The stream of water puts a force on
the glass that tries to pull it into the
stream, not push it away as one might
first expect.

Figure 9. Water
wrapping
around a glass

Force on glass
—_—

Force on water
-

So why does the water bend around
the glass, or air over a wing? First
consider low-speed flight. In low-speed
flight the forces on the air and the asso-
ciated pressures are so low that the air
is not only considered a fluid but an
incompressible fluid. This means that
the volume of a mass of air remains
constant and that flows of air do not
separate from each other to form voids
(gaps).

A second point to understand is that
streamlines communicate with each
other. A streamline, in steady-state
flight, can be looked at as the path of a
particle in the moving air. It is the path
a small, light object would take in the
airflow over the wing. The communica-
tion between streamlines is an expres-
sion of pressure and viscosity. Pressure
is the force per area that the air exerts
on the neighboring streamline. Viscos-
ity in a gas or liquid corresponds to
friction between solids.

Think of two adjacent streamlines
with different speeds. Since these
streamlines have different velocities
forces between them trying to speed
up the slower streamline and slow
down the faster streamline. The speed
of air at the surface of the wing is
exactly zero with respect to the surface
of the wing. This is an expression of

viscosity. The speed of the air increases
with distance from the wing as shown
in Figure 10. Now imagine the first
non-zero velocity streamline that just
grazes the highpoint of the top of the
wing. If it were initially to go straight
back and not follow the wing, there
would be a volume of zero velocity air
between it and the wing. Forces would
strip this air away from the wing and
without a streamline to replace it, the
pressure would lower. This lowering of
the pressure would bend the stream-
line until it followed the surface of the
wing.

——

—

\

Figure 10. The variation of the speed of a fluid
near an object

The next streamline above would
be bent to follow the first by the same
process, and so on. The streamlines
increase in speed with distance from
the wing for a short distance. This is
on the order of 6 inch (15 cm) at the
trailing edge of the wing of an Airbus
A380. This region of rapidly changing
air speed is the boundary layer. If the
boundary layer is not turbulent, the
flow is said to be laminar.

Thus, the streamlines are bent by a
lowering of the pressure. This is why
the air is bent by the top of the wing
and why the pressure above the wing
is lowered. This lowered pressure
decrease with distance above the wing
but is the basis of the lift on a wing.

10 FEATURES

The lowered pressure propagates out at
the speed of sound, causing a great deal
of air to bend around the wing.

Two streamlines communicate on a
molecular scale. This is an expression
of the pressure and the viscosity of air.
Without viscosity there would be no
communication between streamlines
and no boundary layer. Often, calcula-
tions of lift are made in the limit of
zero viscosity. In these cases viscosity
is re-introduced implicitly with the
Kutta-Joukowski condition, which
requires that the air come smoothly off
at the trailing edge of the wing. Also,
the calculations require that the air
follows the surface of the wing which
is another introduction of the effects of
viscosity. One result of the near elimi-
nation of viscosity from the calcula-
tions is that there is no boundary layer
calculated.

It should be noted that the speed
of the uniform flow over the top of
the wing is faster then the free-stream
velocity, which is the velocity of the
undisturbed air some distance from the
wing. The bending of the air causes the
reduction in pressure above the wing.
This reduction in pressure causes an
acceleration of the air. It is often taught
that the acceleration of the air causes a
reduction in pressure. In fact, it is the
reduction of pressure that accelerates
the air in agreement with Newton’s
first law.

Let us look at the air bending around
the wing in Figure 11.To bend the air
requires a force. As indicated by the

colored arrows, the direction of the
force on the air is perpendicular to the
bend in the air. The magnitude of the
force is proportional to the tightness
of the bend. The tighter the air bends
the greater the force on it. The forces
on the wing, as shown by the black
arrows in the figure, have the same
magnitude as the forces on the air but
in the opposite direction. These forces,
working through pressure, represent
the mechanism in which the force is
transferred to the wing.

\

Force on wing Force on air

Figure 11. Forces on the air and the corre-
sponding reaction forces on the wing

Look again at Figure 11, while paying
attention to the black arrows represent-
ing the forces on the wing. There are
two points to notice. The first is that
most of the lift is on the forward part
of the wing. In fact, half of the total lift
on a wing at subsonic speeds is typi-
cally produced in the first one-fourth
of the chord length. The chord is the
distance from the leading edge to the
trailing edge of the wing. The second
thing to notice is that the arrows on
the leading part of the wing are tilted
forward. Thus the force of lift is pull-
ing the wing along as well as lifting it.
This would be nice if it were the entire
story. Unfortunately, the horizontal

forces on the trailing part of the wing
compensate the horizontal forces on
the leading part of the wing.

We now have the tools to under-
stand why a wing has lift. In brief, the
air bends around the wing producing
downwash. Newton'’s first law says that
the bending of the air requires a force
on the air, and Newton’s third law says
that there is an equal and opposite
force on the wing. That is a description
of lift. The pressure difference across
the wing is the mechanism in which
lift is transferred to the wing due to the
bending of the air.

Lift as a function of angle of attack
There are many types of wing: con-
ventional, symmetric, conventional in
inverted flight, the early biplane wings
that looked like warped boards, and
even the proverbial “barn door”. In all
cases, the wing is forcing the air down,
or more accurately pulling air down
from above. (although the early wings
did have a significant contribution from
the bottom.) What each of these wings
has in common is an angle of attack
with respect to the oncoming air. It is
the angle of attack that is the primary
parameter in determining lift.

To better understand the role of the
angle of attack it is useful to introduce
an “effective” angle of attack, defined
such that the angle of the wing to
the oncoming air that gives zero lift
is defined to be zero degrees. If one
then changes the angle of attack both
up and down one finds that the lift

is proportional to the angle. Figure

12 shows the lift of a typical wing

as a function of the effective angle

of attack. A similar lift versus angle

of attack relationship is found for all
wings, independent of their design.
This is true for the wing of a 747, an
inverted wing, or your hand out the
car window. The inverted wing can be
explained by its angle of attack, despite
the apparent contradiction with the
popular explanation of lift. A pilot
adjusts the angle of attack to adjust the
lift for the speed and load. The role of
the angle of attack is more important
than the details of the wings shape in
understanding lift. The shape comes
into play in the understanding of stall
characteristics and drag at high speed.

2.0

0.8 i
1

Critical angle
of attack

=

R —

0.4

Lift
=}

Critical angl
0.4 of attack
I

-0.8r— i

1.2

A6 1 L1
24 -16 -8 0 8 16 24
Effective angle of attack (degree)

Figure 12. Lift as a function of angle of attack

12 FEATURES

One can see in the figure that the lift
is directly proportional to the effec-
tive angle of attack. The lift is posi-
tive (up) when the wing is tilted up
and negative (down) when it is tilted
down. When corrected for area and
aspect ratio, a plot of the lift as a func-
tion of the effective angle of attack is
essentially the same for all wings and
all wings inverted. This is true until
the wing approaches a stall. The stall
begins at the point where the angle
of attack becomes so great that the
airflow begins to separate from the
trailing edge of the wing. This angle is
called the critical angle of attack and is
marked on the figure. This separation
of the airflow from the top of the wing
is a stall.

The wing as air “virtual virtual
scoop”

We now would like to introduce a new
mental image of a wing. One is used
to thinking of a wing as a thin blade
that slices though the air and devel-
ops lift somewhat by magic. For this
we would like to adopt a visualization
aid of looking at the wing as a virtual
scoop that intercepts a certain amount
of air and diverts it to the angle of

the downwash. This is not intended

to imply that there is a real, physical
scoop with clearly defined boundaries,
and uniform flow. But this visualization
aid does allow for a clear understand-
ing of how the amount diverted air

is affected by speed and density. The
concept of the virtual scoop does have

a real physical basis but beyond the
scope of this work.

The virtual scoop diverts a certain
amount of air from the horizontal to
roughly the angle of attack, as depicted
in Figure 13. For wings of typical
airplanes it is a good approximation to
say that the area of the virtual scoop
is proportional to the area of the
wing. The shape of the virtual scoop is
approximately elliptical for all wings,
as shown in the figure. Since the lift of
the wing is proportional to the amount
of air diverted, the lift of is also propor-
tional to the wing’s area.

! - “Virtual Scoop”
— 1 — ,
— !

i 1\ —_] —

. G

02

Figure 13. The “virtual scoop” as a visualization
tool

As stated before, the lift of a wing
is proportional to the amount of air
diverted down times the vertical veloc-
ity of that air. As a plane increases
speed, the virtual scoop diverts more
air. Since the load on the wing does
not increase, the vertical velocity of the
diverted air must be decreased pro-
portionately. Thus, the angle of attack
is reduced to maintain a constant lift.
When the plane goes higher, the air
becomes less dense so the virtual scoop
diverts less air at a given speed. Thus,
to compensate the angle of attack must
be increased. The concepts of this

section will be used to understand lift
in a way not possible with the popular
explanation.

Lift requires power
When a plane passes overhead the for-
mally still air gains a downward veloc-
ity. Thus, the air is left in motion after
the plane leaves. The air has been given
energy. Power is energy, or work, per
time. So, lift requires power. This power
is supplied by the airplane’s engine (or
by gravity and thermals for a sailplane).
How much power will we need to
fly? If one fires a bullet with a mass,
m, and a velocity, v, the energy given
to the bullet is simply Y>amv?. Like-
wise, the energy given to the air by the
wing is proportional to the amount of
air diverted down times the vertical
velocity squared of that diverted air.
We have already stated that the lift of
a wing is proportional to the amount
of air diverted times the vertical veloc-
ity of that air. Thus, the
power needed to lift
the airplane is propor-
tional to the load (or
weight) times the verti-
cal velocity of the air. If
the speed of the plane
is doubled, the amount

100 —

40_

% Full Power

Stall

the power required for lift becomes
less as the airplane’s speed increases. In
fact, we have shown that this power to
create lift is proportional to 1/speed of
the plane.

But, we all know that to go faster (in
cruise) we must apply more power.
So there must be more to power than
the power required for lift. The power
associated with lift is often called the
“induced” power. Power is also needed
to overcome what is called “parasite”
drag, which is the drag associated with
moving the wheels, struts, antenna,
etc. through the air. The energy the
airplane imparts to an air molecule on
impact is proportional to the speed?
(from Y2mv?). The number of mol-
ecules struck per time is proportional
to the speed. The faster one goes the
higher the rate of impacts. Thus the
parasite power required to overcome
parasite drag increases as the speed?.

Power vs. Speed

=== [nduced Power
- = Parasite Power
== Tolal Power

of air diverted down 20
also doubles. Thus to

maintain a constant lift,

the angle of attack must be reduced to
give a vertical velocity that is half the
original. The power required for lift
has been cut in half. This shows that

40 60 a0 100 120 140 160
Speed in Knots

Figure 14. The power required for flight as a
function of speed.

14 FEATURES

Figure 14 shows the “power curves”
for induced power, parasite power,
and total power (the sum of induced
power and parasite power). Again, the
induced power goes as 1/speed and the
parasite power goes as the speed?. At
low speed the power requirements of
flight are dominated by the induced
power. The slower one flies the less air
is diverted and thus the angle of attack
must be increased to increase the verti-
cal velocity of that air. Pilots practice
flying on the “backside of the power
curve” so that they recognize that the
angle of attack and the power required
to stay in the air at very low speeds are
considerable.

At cruise, the power requirement is
dominated by parasite power. Since
this goes as the speed® an increase in
engine size gives one a faster rate of
climb but does little to improve the
cruise speed of the plane. Doubling the
size of the engine will only increase the
cruise speed by about 25%.

Since we now know how the power
requirements vary with speed, we can
understand drag, which is a force. Drag
is simply power divided by speed.
Figure 14 shows the induced, parasite,
and total drag as a function of speed.
Here the induced drag varies as 1/
speed? and parasite drag varies as the
speed?. Taking a look at these figures
one can deduce a few things about
how airplanes are designed. Slower
airplanes, such as gliders, are designed
to minimize induced power, which
dominates at lower speeds. Faster

propeller-driven airplanes are more
concerned with parasite power, and jets
are dominated by parasite drag. (This
distinction is outside of the scope of
this article.)

Wing efficiency
At cruise, a non-negligible amount of
the drag of a modern wing is induced
drag. Parasite drag of a Boeing 747 wing
is only equivalent to that of a 1/2-inch
cable of the same length. One might
ask what affects the efficiency of a
wing. We saw that the induced power
of a wing is proportional to the verti-
cal velocity of the air. If the area of a
wing were to be increased, the size of
our virtual scoop would also increase,
diverting more air. So, for the same lift
the vertical velocity (and thus the angle
of attack) would have to be reduced.
Since the induced power is propor-
tional to the vertical velocity of the air,
it is also reduced. Thus, the lifting effi-
ciency of a wing increases with increas-
ing wing area. The larger the wing the
less induced power required to produce
the same lift, though this is achieved
with and increase in parasite drag.
There is a misconception by some
that lift does not require power. This
comes from aeronautics in the study of
the idealized theory of wing sections
(airfoils). When dealing with an airfoil,
the picture is actually that of a wing
with infinite span. We have seen that
the power necessary for lift decrease
with increasing area of the wing. A wing
of infinite span does not require power

for lift since it develops lift by diverting data). Since the speed is constant the

an infinite amount of air at near-zero change in fuel consumption is due
velocity. If lift did not require power to the change in induced power. The
airplanes would have the same range data are fitted by a constant (parasite
full as they do empty, and helicopters power) and a term that goes as the
could hover at any altitude and load. load?. This second term is just what
Best of all, propellers (which are rotat- was predicted in our Newtonian dis-
ing wings) would not require much cussion of the effect of load on induced

power to produce thrust. Unfortunately, power.
we live in the real world where both lift

. . 1.6
and prOpUlSlon reqU1re power' Fuel Censumptien vs Laad

Power and wing loading a1
Now let us consider the relation-
ship between wing loading and
power. At a constant speed, if the
wing loading is increased the verti-
cal velocity of the downwash must
be increased to compensate. This

-
[
1

Constanl Speed
Mach 0.6

03 - | L 1 1 ' 1
300 350 400 450 500 550

Fuel flow (arb. units)

is accomplished by increasing the Gross weight (x1000 Ib)

angle of attack of the wing. If the Figure 16. Fuel consumption as a function of
total weight of the airplane were dou- weight for large jet at a costant speed.

bled (say, in a 2g turn), and the speed

remains constant, the vertical velocity The increase in the angle of attack
of the air is doubled to compensate with increased load has a downside
for the increased wing loading. The other than just the need for more
induced power is proportional to the power. As shown in Figure 12 a wing
load times the vertical velocity of the will eventually stall when the air can

diverted air, which have both doubled. no longer follow the upper surface.
Thus the induced power requirement ~ That is, when the critical angle is

has increased by a factor of four! So reached. Figure 17 shows the angle
induced power is proportional to the of attack as a function of airspeed for
load?. a fixed load and for a 2-g turn. The
One way to measure the total power angle of attack at which the plane
is to look at the rate of fuel consump- stalls is constant and is not a function
tion. Figure 16 shows the fuel con- of wing loading. The angle of attack
sumption versus gross weight for a increases as the load and the stall speed
large transport airplane traveling at a increases as the square root of the load.
constant speed (obtained from actual Thus, increasing the load in a 2-g turn

16 FEATURES

increases the speed at which the wing
will stall by 40%. An increase in alti-
tude will further increase the angle of
attack in a 2-g turn. This is why pilots
practice “accelerated stalls” which
illustrates that an airplane can stall at
any speed, since for any speed there is
a load that will induce a stall.

20 i T T T T T T

-
o
T

Angle of Attack
3

L
T T T T

0 L 1 1 L 1
30 40 50 60 T 80 80 100
Speed

Figure 17. Angle of attack versus speed for
straight and level flight and for a 2-g turn.

Wing vortices

One might ask what the downwash
from a wing looks like. The downwash
comes off the wing as a sheet and is
related to the details on the load distri-
bution on the wing. Figure 18 shows,
through condensation, the distribu-
tion of lift on an airplane during a
high-g maneuver. From the figure one
can see that the distribution of load
changes from the root of the wing to
the tip. Thus, the amount of air in the
downwash must also change along the
wing. The wing near the root is “vir-
tual scooping” up much more air than
the tip. Since the wing near the root is
diverting so much air the net effect is

that the downwash sheet will begin to
curl outward around itself, just as the
air bends around the top of the wing
because of the change in the velocity
of the air. This is the wing vortex. The
tightness of the curling of the wing
vortex is proportional to the rate of
change in lift along the wing. At the
wing tip the lift must rapidly become
zero causing the tightest curl. This is
the wing tip vortex and is just a small
(though often most visible) part of the
wing vortex. Returning to Figure 7 one
can clearly see the development of the
wing vortices in the downwash as well
as the wing tip vortices.

Figure 18. Condensation showing the distribu-
tion of lift along a wing.

Winglets (those small vertical exten-
sions on the tips of some wings) are
used to improve the efficiency of the
wing by increasing the effective length,
and thus area, of the wing. The lift of
a normal wing must go to zero at the
tip because the bottom and the top
communicate around the end. The
winglet blocks this communication so
the lift can extend farther out on the
wing. Since the efficiency of a wing
increases with area, this gives increased

efficiency. One caveat is that winglet
design is tricky and winglets can actu-
ally be detrimental if not properly
designed.

Ground effect

The concept of ground effect is well
known to pilots. This effect is the
increase in efficiency of a wing as it
comes to within about a wing’s length
of the ground. The effect increases
with the reduction in the distance to
the ground. A low-wing airplane will
experience a reduction in the induced
drag of as much as 50 percent just
before touchdown. This reduction in
drag just above a surface is used by
large birds, which can often be seen
flying just above the surface of the
water. Pilots taking off from deep-grass
or soft runways also use ground effect.
The pilot is able to lift the airplane
off the soft surface at a speed too
slow to maintain flight out of ground
effect. This reduces the resistance on
the wheels and allows the airplane to
accelerate to a higher speed before
climbing out of ground effect.

What is the cause of this reduction
in drag? There are two contributions
that can be credited with the reduc-
tion in drag. The ground influences the
flow field around the wing which, for a
given angle of attack, increases the lift.
But, at the same time, there is a reduc-
tion in downwash. It can be surmised
that this additional lift must come
from an increase in pressure between
the wing and the ground. In addition,

since lift is increased for a given angle
of attack, the angle of attack can be
reduced for the same lift, resulting in
less downwash and less induced drag.

Ground effect introduces a funda-
mental change from the discussion of
flight at altitude. When no ground is
present, the relationship between lift,
drag and downwash is straight for-
ward. But, near the ground, there is
an action-reaction between the wing,
the air and the ground. At altitude the
ground is so distant that this effect
does not exist. Near the ground this
interaction helps produce lift and
reduce downwash due to an increase
in pressure below the wing. The details
of ground effect are extremely com-
plex. Most aerospace texts devote a
paragraph or two and don’t attempt
to describe it in depth. The truth is
that so much is changing in ground
effect that it is difficult to describe by
pointing to a single change in the air
flow or a term in an equation. There
is no simple way to describe how the
airflow adjusts to satisfy the change in
conditions.

Conclusions

Let us review what we have learned
and get some idea of how the physical
description has given us a greater abil-
ity to understand flight. First what have
we learned:

= The amount of air diverted by the
wing is proportional to the speed of
the wing and the air density.

18 FEATURES

= The vertical velocity of the diverted
air is proportional to the speed of the
wing and the angle of attack.

The lift is proportional to the

As one can see, the popular explana-
tion, which fixates on the shape of the
wing, may satisfy many but it does not
give one the tools to really understand

flight. The physical description of lift
is easy to understand and much more
powerful. M

amount of air diverted times the ver-
tical velocity of the air.

= The power needed for lift is propor-
tional to the lift times the vertical
velocity of the air. Now let us look
at some situations from the physical
point of view and from the perspec-
tive of the popular explanation.

David Anderson is a private pilot and a life-
long flight enthusiast. He as degrees from
the University of Washington, Seattle, and
a Ph.D. in physics from Columbia University.
He has had a 30-year career in high-energy
physics at Los Alamos National Labora-
tory, CERN in Geneva, Switzerland, and the
Fermi National Accelerator Laboratory.

= The plane’s speed is reduced. The
physical view says that the amount
of air diverted is reduced so the angle
of attack is increased to compensate.
The power needed for lift is also
increased. The popular explanation
cannot address this.

Scott Eberhardt is a private pilot who works
in high-lift aerodynamics at Boeing Commer-
cial Airplanes Product Development. He has
degrees from MIT and a Ph.D. in aeronautics
and astronautics from Stanford University. He
joined Boeing in 2006 after 20 years on the
faculty of the Department of Aeronautics and
Astronautics at the University of Washington,
Seattle.

= The load of the plane is increased.
The physical view says that the
amount of air diverted is the same
but the angle of attack must be
increased to give additional lift.
The power needed for lift has also
increased. Again, the popular expla-
nation cannot address this.

Reprinted with permission of the original authors.
First appeared in hn.my/allstar (allstar.fiu.edu)

This material can be found in more detail in Un-
derstanding Flight 1st and 2nd editions by David
Anderson and Scott Eberhardt, McGraw-Hill, 2001,
and 2009.

= A plane flies upside down. The
physical view has no problem with
this. The plane adjusts the angle of
attack of the inverted wing to give
the desired lift. The popular expla-
nation implies that inverted flight is
impossible.

http://hn.my/allstar

DESIGN

The Messy Art of
UX Sketching

By PEITER BUICK

HEAR A LOT of people talking about

the importance of sketching when

designing or problem-solving, yet
it seems that very few people actually
sketch. As a UX professional, I sketch
every day. [often take over entire walls
in our office and cover them with
sketches, mapping out everything from
context scenarios to wireframes to
presentations.

My desk.

Although starting a prototype on a
computer is sometimes easier, it’s not
the best way to visually problem-solve.
When you need to ideate website lay-
outs or mobile applications or to story-
board workflows and context scenarios,
sketching is much more efficient. It
keeps you from getting caught up in
the technology, and instead focuses you
on the best possible solution, freeing
you to take risks that you
might not otherwise take.

Many articles discuss
the power of sketching
and why you should do
it, but they don’t go into
the how or the meth-
ods involved. Sketching
seems straightforward,
but there are certain ways
to do it effectively. In this
article, we’ll cover a col-
lection of tools and tech-
niques that I (and many
other UX and design
folks) use every day.

20 DESIGN

Sketching = Drawing

Some of the most effective sketches
I've seen are far from perfect draw-
ings. Just like your thoughts and ideas,
sketches are in a constant state of flux,
evolving and morphing as you reach

a potential solution. Don’t think that
you have to be able to draw in order to
sketch, although having some experi-
ence with it does help.

= Sketching is an expression of think-
ing and problem-solving.

= It’s a form of visual communication,
and, as in all languages, some ways
of communicating are clearer than
others.

= Sketching is a skill: the more you do
it, the better you'll get at it.

When evaluating your sketches, ask
yourself, “How could I better commu-
nicate these thoughts?” Getting caught
up in evaluating your drawing ability is
easy, but try to separate the two. Look
at your sketch as if it were a poster.
What'’s the first thing that’s read?
Where is the detailed info? Remember,
the eye is drawn to the area with the
most detail and contrast.

Just as one’s ability to enunciate
words affects how well others under-
stand them, one’s ability to draw does
have an impact on how communica-
tive a sketch is. The good news is that
drawing and sketching are skills, and
the more you do them, the better
you'll get.

OK, let’s get started.

Work In Layers

Often when I've done a sketch, the
result looks more like a collage than a
sketch. Efficiency in sketching comes
from working in layers.

Technique

Start with a light-gray marker (20 to
30% gray), and progressively add layers
of detail with darker markers and pens.

Why?

Starting with a light-gray marker
makes this easy. It allows you to make
mistakes and evaluate your ideas as
you work through a problem. Draw

a crooked line with the light marker?
No big deal. The lines will barely be
noticeable by the time you're finished
with the sketch.

As the pages fill up with ideas, go
back in with a darker marker (60%
gray) or pen, and layer in additional
details for the parts you like. This is
also a great way to make a particular
sketch pop beside other sketches.

Sketching in layers also keeps you
from getting caught up in details right
away. It forces you to decide on the
content and hierarchy of the view first.
If you are sketching an interface that
contains a list, but you don’t yet know
what will go in the list, put in a few
squiggles. Later, you can go back in and
sketch a few options for each list item
and append them to the page.

Explore a variety
of interactions
and ideas in a
single sketch
using sticky notes.

Caution

If you start drawing with a ballpoint pen
and then go in later with a marker, the
pen’s ink will likely smear from the alco-
hol in the marker.

As you get more confident in your
sketching, you will become more com-
fortable and find that you don’t need
to draw as many underlays. But I still
find it useful because it allows you to
experiment and evaluate ideas as you

sketch.

Loosen Up

Technique

When sketching long lines, consider
moving your arm and pen with your
shoulder rather than from the elbow or
wrist. Reserve drawing with your wrist
for short quick lines and areas where
you need more control.

Why?

This will allow you to draw longer,
straighter lines. If you draw from the
elbow, you'll notice that the lines all
have a slight curve to them. Placing
two dots on the paper, one where you
want the line to start and one where
you want it to end, is sometimes help-
ful. Then, orient the paper, make a
practice stroke or two, and then draw
the line.

A bonus to drawing from the shoul-
der is that much of the motion trans-
lates to drawing on a whiteboard; so,
in time, your straight lines will be the
envy of everyone in the room.

Play To Your Strengths

Technique

Rotate the page before drawing a line
in order to draw multiple angles of
lines more easily.

22 DESIGN

Why?

Very few people can draw lines in all
directions equally well. Rotating the
page allows you to draw a line in the
range and direction that works best for
you. Don’t try to draw a vertical line

if you find it difficult; rotate the page
90 degrees, and draw a horizontal one
instead. It's super-simple but amazingly
powerful.

Caution

This does not translate well to a white-
board, so you'll still need to learn to
draw vertical lines.

Sketching Interactions

Technique

Start with a base sketch, and then use
sticky notes to add tooltips, pop-overs,
modal windows and other interactive
elements.

Upon photo-
copying vari-
ous versions

of a sketch,
each with dif-
ferent sticky
notes, you'll
end up with
various distinct
sketches.

Why?

Using sticky notes to define tooltips
and other interactive elements lets
you quickly define interactions and
concepts without having to redraw the
framework of the application. They
are easy to move around and can be
sketched on with the same markers
and pens you are already using.

= Define multiple interactions on one
sketch, and then strategically remove
pieces one at a time before scanning
them in or copying the sketch.

= Use different colors to represent dif-
ferent types of interaction.

= Is one sticky note not big enough for
your modal window? Add another
right next to it.

= Is one sticky note too big for your
tooltip, user a ruler as a guide to
quickly rip the note down to size.

Sketching over a pho-
tocopy of the origi-
nal to reevaluate the

sidebar.

Copying And Pasting For The Real
World

At times, you may want to manually
redraw a Ul element multiple times in
a sketch. This is not always a bad thing,
because it gives you the opportunity to
quickly iterate and forces you to recon-
sider your ideas. That being said, an
all-in-one scanner or photocopier could
dramatically increase your efficiency.

Technique

Use a photocopier to quickly create
templates from existing sketches or to
redraw an area of a sketch.

Why?

A photocopier is the old-school version
of Control + C, Control + V. It makes
the production of templates and under-
lays more efficient. It also boosts your
confidence, because if you mess up (and
you will mess up), you can easily fix it.

= Does one part of your interface need
to be consistently redrawn in mul-
tiple sketches? Run a few copies,
and then sketch directly on the
print-outs.

Did you mess up a part of the
sketch? No problem. Cover up that
portion of the sketch with a piece of
paper or with correction fluid, run
off a copy, and then start sketching
directly on the print-out.

Are you working on a mobile project?
Or do you want to make a series of
sketches all of the same size? Create
a layout and copy off a few rounds of
underlays. Easier yet, print off under-
lays of devices or browsers; a good
selection can be found in the article
“Free Printable Sketching, Wirefram-
ing and Note-Taking PDF Templates
8.” [hn.my/wireframe]

24 DESIGN

http://hn.my/wireframe

= Do you want to change the layout of
a sidebar in your last five sketches?
Sketch the new sidebar, run off a few
copies, and then tape the new side-
bars over the old ones. It’s that easy.

= To use a sketch as an underlay of
another similar one, adjust the den-
sity or darkness setting on your pho-
tocopier to run a copy of the sketch
at 20% of it original value.

The Design Is In The Details

Use a ruler; specifically, a quilting ruler.
Quilting rulers are translucent and are
normally printed with a grid screen,
letting you see the line you're drawing
relative to the rest of the sketch.

Technique
Use a ruler and a light-gray marker to
draw an underlay for a detailed sketch.

The final sketch.
Notice how the
sidebar and its detail
are darker than the
photocopy. This is
intentional, because it
allows you to explore
ideas in the context of
the overall design.

Why?

This lets you quickly draw a series of
lines that are offset a set distance from
each other. This works great for ele-
ments such as lists items, charts, but-
tons and anything else that needs to be
evenly spaced. It’s like an analog ver-
sion of “smart guides.”

Technique

After using a light-gray marker to lay
out a sketch, use a ruler and ballpoint
pen or black marker to finalize it.

Why?

When sketching in layers, you want
the final design or layout to “pop.” A
ruler enables you to be more precise
in detailed areas and ensures that long
edges are straight.

Quickly creating
evenly spaced
lines with a
quilting ruler
and 30% gray
marker.

There is no shame in using a ruler.
The key is knowing when to use it.
Don'’t start sketching with a ruler;
rather, bring one in when you need the
detail and precision. Remember, you're
sketching, not drawing.

Technique

Use a ruler to quickly rip paper or
sticky notes by firmly holding the
paper with one hand and ripping away
the edge with the other hand.

Why?
It’s quicker then grabbing scissors; you
already have the ruler with you; and
you can take it through airport security.
After lightly sketching an interface
with a light marker, finalize it or make
one area pop by using a ruler to lay
down darker lines.

Tell The Whole Story

Technique

Draw the application in the context of
where and how it being used, or frame
it with the device it will be used on.

Why?

This forces you to think about the
environment that the application will
be used in, instills empathy for your
users, and establishes understand-

ing of the challenges unique to this
application.

26 DESIGN

I get it. No one wants to sketch out a
monitor every time they draw a wire-
frame. I'm not saying you have to, but
a few sketches with context go a long
way. Especially with mobile devices,
the more context you add to a sketch,
the better. Moreover, I always sketch
the device for a mobile interface as an
underlay, and I often try to sketch the
UI at full scale. This forces you to deal
with the constraints of the device and
makes you aware of how the user may
be holding the device.

Caution

Drawing the surrounding environ-
ment can be challenging and requires a
higher level of sketching competency.
Don’t let this intimidate you. If you're
not comfortable sketching the environ-
ment or you find it takes too long, use
a picture as an underlay instead.

Sketching ideas for a mobile appli-
cation in the context of where it
will be used.

Ditch The Sketchbook

Technique
Draw on 8.5 x 11" copy paper.

Why?

Sketches are for sharing. You can
easily hang 8.5 x 11" sheets on a wall
to share ideas with others or to see a
project in its entirety. When you need
to save a sketch or two, you can easily
batch scan them into a computer with-
out ripping them out of the sketch-
book. Still not convinced? Copy paper
is cheaper; it allows you to use sketches
as underlays without photocopying;
and you don’t have to choose between
book-bound or spiral-bound.

One of the many
walls of sketches in
our office.

What Are You Waiting For? It's worth repeating that sketching is
Sketching is not reserved for designers. the quickest way to explore and share
Developers, project managers and busi- thinking with others. It focuses you
ness analysts can get in on the fun, too. on discovering the best possible solu-
It’s the best way for teams to quickly tion, without getting caught up in the
communicate, explore and share ideas technology.

across disciplines. Also, I've found Go for it! Don’t get caught up in the
that others are more receptive to give tools. Make a mess. And have fun!
feedback and make suggestions when

shown sketches than when shown Peiter Buick is Senior UX Specialist at Universal
print-outs or screenshots. Mind. He is passionate about design’s ability

Remember, it’s about getting ideas to directly impact peoples lives. With a back-
out, reviewing those ideas and docu- ground in industrial design, he brings a unique

menting them, not about creating a perspective to the UX community.

work of art. When evaluating your eninted it bermicsion of the ol auth
sketches, ask yourself; “HOW COuld I ‘eprlnte wit -permISS|on of the Orlgl'na aut Or'.
) Y First appeared in hn.my/sketch (smashingmagazine.com)
better communicate these thoughts? Images by Michael Kleinpaste.
Getting caught up in evaluating your
drawing ability is easy, but try to sepa-
rate the two, and know that the more
you do it, the better you'll get.

28 DESIGN

http://hn.my/sketch

Google tracks you. We don't.

http://duckduckgo.com

PROGRAMMING

Never Create Ruby
Strings Longer Than
23 Characters

By PAT SHAUGHNESSY

BVIOUSLY THIS IS an utterly

preposterous statement:

it'’s hard to think of a more
ridiculous and esoteric coding require-
ment. I can just imagine all sorts of
amusing conversations with designers
and business sponsors: “No... the size
of this <input> field should be 23...
24 is just too long!” Or: “We need to
explain to users that their subject lines
should be less than 23 letters...” Or:
“Twitter got it all wrong... the 140
limit should have been 231"

Why in the world would I even
imagine saying this? As silly as this
requirement might be, there is actu-
ally a grain of truth behind it: creating
shorter Ruby strings is actually much
faster than creating longer ones. It
turns out that this line of Ruby code:

str = "1234567890123456789012" +

X

... is executed about twice as fast by
the MRI 1.9.3 Ruby interpreter than

this line of Ruby code:
str = "12345678901234567890123" +

X

Huh? What's the difference? These
two lines look identical! Well, the dif-
ference is that the first line creates a
new string containing 23 characters,
while the second line creates one with
24. Tt turns out that the MRI Ruby
1.9 interpreter is optimized to handle
strings containing 23 characters or less
more quickly than longer strings. This
isn’t true for Ruby 1.8.

Today I'm going to take a close look
at the MRI Ruby 1.9 interpreter to see
how it actually handles saving string
values... and why this is actually true.

30 PROGRAMMING

Not all strings are created equal
Over the holidays I decided to read
through the Ruby Hacking Guide
[rhg.rubyforge.org]. If you've never
heard of it, it’s a great explanation of
how the Ruby interpreter works inter-
nally. Unfortunately, it's written in Jap-
anese, but a few of the chapters have
been translated into English. Chapter
2, one of the translated chapters, was a
great place to start since it explains all
of the basic Ruby data types, including
strings.

After reading through that, I decided
to dive right into the MR1 1.9.3 C
source code to learn more about how
Ruby handles strings; since I use RVM,
for me the Ruby source code is located
under ~/.rvm/src/ruby-1.9.3-preview].
I started by looking at include/ruby/
ruby.h, which defines all of the basic
Ruby data types, and string.c, which
implements Ruby String objects.

Reading the C code, I discovered that
Ruby actually uses three different types
of string values, which I call:

= Heap Strings
= Shared Strings
= Embedded Strings

I found this fascinating! For years I've
assumed every Ruby String
object was like every other
String object. But it turns out

Heap Strings

The standard and most common way
for Ruby to save string data is in the
“heap.” The heap is a core concept

of the C language: it’s a large pool

of memory that C programmers can
allocate from and use via a call to the
malloc function. For example, this line
of C code allocates a 100 byte chunk
of memory from the heap and saves its
memory address into a pointer:

char *ptr = malloc(100);

Later, when the C programmer is
done with this memory, she can release
it and return it to the system using
free:

free(ptr);

Avoiding the need to manage
memory in this very manual and
explicit way is one of the biggest ben-
efits of using any high level program-
ming language, such as Ruby, Java, C#,
etc. When you create a string value in
Ruby code like this, for example:

str = "Lorem ipsum dolor sit amet,
consectetur adipisicing elit"

... the Ruby interpreter creates a struc-
ture called “RString” that conceptually

looks like this:

this is not true! Let’s take a
closer look...

long len = 56

str (RString struct)

__| Lorem ipsum dolor sit amet,

char *ptr

'| consectetur adipisicing elit

http://rhg.rubyforge.org

You can see that the RString structure
contains two values: ptr and len, but
not the actual string data itself. Ruby
actually saves the string character values
themselves in some memory allocated
from the heap, and then sets ptr to the
location of that heap memory and len
to the length of the string.

Here’s a simplified version of the C
RString structure:

struct RString {
long 1len;
char *ptr;

}s

I've simplified this a lot; there are
actually a number of other values
saved in this C struct. I'll discuss some
of them next and others I'll skip over
for today. If you're not familiar with
C, you can think of struct (short for
“structure”) as an object that contains
a set of instance variables, except in C
there’s no object at all — struct

str = "Lorem ipsum dolor sit amet,
consectetur adipisicing elit"
str2 = str

Here the Ruby interpreter has real-
ized that you are assigning the same
string value to two variables: str and
str2. So in fact there’s no need to
create two copies of the string data
itself. Instead, Ruby creates two
RString values that share the single
copy of the string data. The way this
works is that both RString structs con-
tain the same ptr value to the shared
data... meaning both strings contain
the same value. There’s also a shared
value saved in the second RString
struct that points to the first RString
struct. There are some other details,
which I'm not showing here, such as
some bit mask flags that Ruby uses
to keep track of which RStrings are
shared and which are not.

is just a chunk of memory con-
taining a few values.

[refer to this type of Ruby
string as “Heap String” since

(str2 (RString struct)

char *ptr
long len = 56
VALUE shared

-~

Lorem ipsum dolor sit amet,

the actual string data is saved
in the heap.

consectetur adipisicing elit

Shared Strings
Another type of string value

str (RString struct)

char *ptr
long len = 56

»

that the Ruby interpreter uses
is called a “Shared String” in the Ruby
C source code. You create a Shared
String every time you write a line of
Ruby code that copies one string to
another, similar to this:

32 PROGRAMMING

Aside from saving memory, this also
speeds up execution of your Ruby
programs dramatically by avoiding the
need to allocate more memory from
the heap using another call to malloc.

32

malloc is actually a fairly expensive
operation: it takes time to track down
available memory of the proper size in
the heap and also to keep track of it for
freeing later.

Here’s a somewhat more accurate
version of the C RString structure,
including the shared value:

struct RString {
long 1len;
char *ptr;
VALUE shared;
}s
Strings that are copied from one vari-

able to another like this I call “Shared
Strings.”

Embedded Strings

The third and last way that MRI Ruby
1.9 saves string data is by embedding
the characters into the RString struc-
ture itself like this:

str3 = "Lorem ipsum dolor"

str3 (RString struct)

char ary[] = "Lorem ipsum dolor"

This RString structure contains a
character array called ary and not the
ptr, len and shared values we saw
above. Here’s another simplified defi-
nition of the same RString structure,
this time containing the ary character
array:

struct RString {

char ary[RSTRING_EMBED_LEN_MAX
+ 1];
}

If you're not familiar with C code,
the syntax char ary[100] creates an
array of 100 characters (bytes). Unlike
Ruby, C arrays are not objects. Instead,
they are really just a collection of bytes.
In C you have to specify the length of
the array you want to create ahead of
time.

How do Embedded Strings work?
Well, the key is the size of the ary
array, which is set to RSTRING_EMBED_
LEN_MAX+1. If you're running a 64-bit
version of Ruby, RSTRING_EMBED_LEN_
MAX is set to 24. That means a short
string like this will fit into the RString
ary array:

str = "Lorem ipsum dolor"

... while a longer string like this will
not:

str = "Lorem ipsum dolor sit amet,
consectetur adipisicing elit"

How Ruby creates new string values
Whenever you create a string value in
your Ruby 1.9 code, the interpreter goes
through an algorithm similar to this:

= Is this a new string value or a copy of
an existing string? If it’s a copy, Ruby
creates a Shared String. This is the
fastest option since Ruby only needs
a new RString structure and not
another copy of the existing string
data.

= Is this a long string or a short string?
If the new string value is 23 charac-
ters or less, Ruby creates an Embed-
ded String. While not as fast as a
Shared String, it’s still fast because
the 23 characters are simply copied
right into the RString structure and
there’s no need to call malloc.

= Finally, for long string values, 24
characters or more, Ruby creates
a Heap String — meaning it calls
malloc and gets some new memory
from the heap, and then copies the
string value there. This is the slowest
option.

The actual RString structure

For those of you familiar with the C
language, here’s the actual Ruby 1.9
definition of RString:

struct RString {
struct RBasic basic;
union {
struct {
long len;
char *ptr;
union {
long capa;
VALUE shared;
} aux;
} heap;

char ary[RSTRING_EMBED_LEN_MAX

+ 1];
} as;

1

[won't try to explain all the code
details here, but here are a couple
important things to learn about Ruby
strings from this definition:

= The RBasic structure keeps track of
various important bits of information
about this string, such as flags indi-
cating whether it’s shared or embed-
ded, and a pointer to the correspond-
ing Ruby String object structure.

= The capa value keeps track of the
“capacity” of each Heap String... it
turns out Ruby will often allocate
more memory than is required for
each Heap String, again to avoid
extra calls to malloc if a string size
changes.

= The use of union allows Ruby to
EITHER save the len/ptr/capa/
shared information OR the actual
string data itself.

= The value of RSTRING_EMBED_LEN_MAX
was chosen to match the size of the
len/ptr/capa values. That’s where
the 23-character limit comes from.

Here’s the line of code from ruby.h
that defines this value:

#define RSTRING_EMBED_LEN_MAX
((int)((sizeof(VALUE)*3)/
sizeof(char)-1))

On a 64-bit machine, sizeof(VALUE)
is 8, leading to the limit of 23 charac-
ters. This will be smaller for a 32-bit
machine.

34 PROGRAMMING

Benchmarking Ruby string
allocation

Let’s try to measure how much faster
short strings are vs. long strings in Ruby
1.9.3. Here’s a simple line of code that
dynamically creates a new string by
appending a single character onto the
end:

new_string = str + 'x'

The new_string value will either be
a Heap String or an Embedded String,
depending on how long the str vari-
able’s value is. The reason I need to use
a string concatenation operation, the +
'x' part, is to force Ruby to allocate a
new string dynamically. Otherwise, if [
just used new_string = str, I would
get a Shared String.

Now I'll call this method from a loop
and benchmark it:

require 'benchmark’
ITERATIONS = 1000000
def run(str, bench)

bench.report("#{str.length + 1}
chars") do

ITERATIONS.times do
new_string = str + 'x'
end
end

end

Here I'm using the benchmark
library to measure how long it takes to
call that method 1 million times. Now
running this with a variety of different
string lengths:

Benchmark.bm do |bench]|
run("12345678901234567890",
bench)
run("123456789012345678901",
bench)
run("1234567890123456789012",
bench)
run("12345678901234567890123",
bench)
run("123456789012345678901234",
bench)
run("1234567890123456789012345
", bench)
run("12345678901234567890123456
", bench)
end

We get an interesting result:

user system

total real

21 chars ©0.250000 ©0.000000
0.250000 (0.247459)

22 chars ©0.250000 ©0.000000
0.250000 (0.246954)

23 chars ©0.250000 ©0.000000
0.250000 (0.248440)

24 chars ©0.480000 ©.000000
0.480000 (0.478391)

25 chars ©0.480000 ©0.000000
0.480000 (0.479662)

26 chars ©0.480000 ©.000000
0.480000 (0.481211)

27 chars ©0.490000 ©0.000000
0.490000 (0.490404)

Note that when the string length
is 23 or less, it takes about 250ms to
create 1 million new strings. But when
my string length is 24 or more, it takes
around 480ms, almost twice as long!

Here’s a graph showing some more data; the bars show how long it takes to
allocate 1 million strings of the given length:

Time required to create 1 million strings (ms)

450
400
350
300
250
200
150
100
50
0

20 21 22 23 24 25 26 27 28 29 30
String Length

Conclusion

Don’t worry! I don’t think you should For me I really think understand-
refactor all your code to be sure you ing something about how the Ruby
have strings of length 23 or less. That interpreter works is just fun! I enjoyed
would obviously be ridiculous. The taking a look through a microscope
speed increase sounds impressive, but at these sorts of tiny details. I do also
actually the time differences I mea- suspect having some understanding of
sured were insignificant until I allo- how Matz and his colleagues actually
cated 100,000s or millions of strings — implemented the language will eventu-

how many Ruby applications will need ally help me to use Ruby in a wiser and
to create this many string values? And more knowledgeable way. M
even if you do need to create many

string objects, the pain and confu- Pat Shaughnessy (@pat_shaughnessy) is a
sion caused by using only short strings ~ Ruby developer working at a global manage-
would overwhelm any performance ment consulting firm. Pat also writes in-depth
benefit you might get. articles at patshaughnessy.net, some of which

have been featured on the Ruby Weekly news-
letter, the Ruby5 podcast and the Ruby Show.

Reprinted with permission of the original author.
First appeared in hn.my/23char (patshaughnessy.net)

36 PROGRAMMING

http://twitter.com/pat_shaughnessy
http://patshaughnessy.net
http://hn.my/23char

HARVEST

@ =: (S

TIMESHEETS INVOICES REPORTS

[\)‘.“;“/\""“ 7
‘v%é IPHONE / ANDROID

GOOGLE APPS

DESKTOP WIDGET TWITTER

Learn more at www.getHarvest.com/hackers

http://hn.my/23char
http://www.getharvest.com/hackers

Fountain Codes

By NICK JOHNSON

OUNTAIN CODES, OTHERWISE known
as “rateless codes,” is a way to
take some data — a file, for
example — and transform it into
an effectively unlimited number of
encoded chunks, such that you can
reassemble the original file given any
subset of those chunks, as long as you
have a little more than the size of the
original file. In other words, it lets you
create a “fountain” of encoded data;
a receiver can reassemble the file by
catching enough “droplets,” regardless
of which ones they get and which ones
they miss.
What makes this so remarkable is
that it allows you to send a file over
a lossy connection — such as, say, the
internet — in a way that doesn’t rely
on you knowing the rate of packet loss,
and it doesn’t require the receivers to
communicate anything back to you
about which packets they missed. You

can see how this would be useful in
a number of situations, from sending
a static file over a broadcast medium,
such as on-demand TV, to propagat-
ing chunks of a file amongst a large
number of peers, like BitTorrent does.
Fundamentally, though, fountain
codes are surprisingly simple. There are
a number of variants, but for the pur-
poses of this article, we'll examine the
simplest, called an LT, or Luby Trans-
form Code. LT codes generate encoded

blocks like this:

1.Pick a random number, d, between
1 and k, the number of blocks in the
file. We'll discuss how best to pick
this number later.

2.Pick d blocks at random from the file,
and combine them together. For our
purposes, the xor operation will work
fine.

38 PROGRAMMING

3.Transmit the combined block, along
with information about which blocks
it was constructed from.

That’s pretty straightforward, right?
A lot depends on how we pick the
number of blocks to combine together
— called the degree distribution — but
we’ll cover that in more detail shortly.
You can see from the description that
some encoded blocks will end up being
composed of just a single source block,
while most will be composed of several
source blocks.

Another thing that might not be
immediately obvious is that while we
do have to let the receiver know what
blocks we combined together to pro-
duce the output block, we don’t have
to transmit that list explicitly. If the
transmitter and receivers agree on a
pseudo-random number generator, we
can seed that PRNG with a randomly
chosen seed and use that to pick the
degree and the set of source blocks.
Then, we just send the seed along with
the encoded block, and our receiver
can use the same procedure to recon-
struct the list of source blocks we used.

The decoding procedure is a little —
but not much — more complicated:

1.Reconstruct the list of source blocks
that were used to construct this

encoded block.

2.For each source block from that list,
xor that block with the encoded
block if you have already decoded it,
and remove it from the list of source

blocks.

3.If there are at least two source blocks
left in the list, add the encoded block

to a holding area.

4 If there is only one source block
remaining in the list, you have suc-
cessfully decoded another source
block! Add it to the decoded file,
and iterate through the holding list,
repeating the procedure for any
encoded blocks that contain it.

Let’s work through an example of
decoding to make it clearer. Suppose
we receive five encoded blocks, each
one byte long, along with information
about which source blocks each is con-
structed from. We could represent our
data in a graph, like this:

Nodes on the left represent encoded
blocks we received, and nodes on the
right represent source blocks. The first
block we received, 0x48 turns out to
consist of only one source block — the
first source block — so we already
know what that block was. Following Repeating the same procedure again,
the arrows pointing to the first source we can see we now know enough to
block, we can see that the second and decode the fourth encoded block,
third encoded blocks only depend on which depends on the second and third

the first source block and one other. source blocks, both of which we now
Since we now know the first source know. XORing them together lets us
block, we can xor them together, giving decode the fifth and final source block,
us this: giving us this:

0x48 = "H" 0x48 = "H"

;@

Reprinted with permission of the original author.
First appeared in hn.my/fountain (notdot.net)

40 PROGRAMMING

http://hn.my/fountain

Finally, we can now decode the last
remaining source block, giving us the
rest of the message:

Admittedly this is a fairly contrived
example since we happened to receive
just the blocks we needed to decode the
message, with no extras and in a very
convenient order. However, it serves to
demonstrate the principle. I'm sure you
can see how this applies to larger blocks
and larger files quite simply.

[mentioned earlier that selecting
the degree distribution, which is the
number of source blocks each encoded
block should consist of, is quite impor-
tant. Ideally, we need to generate a
few encoded blocks that have just one

source block so decoding can get started,
and a majority of encoded blocks that
depend on a few others. It turns out
such an ideal distribution exists, and is
called the ideal soliton distribution.

Unfortunately, the ideal soliton distri-
bution isn’t quite so ideal in practice,
as random variations make it likely
that there will be source blocks that
are never included, or that decoding
will stall when it runs out of known
blocks. A variation on the ideal soliton
distribution, called the robust soliton
distribution, improves on this, generat-
ing more blocks with very few source
blocks and also generating a few blocks
that combine all or nearly all of the
source blocks to facilitate decoding the
last few source blocks.

That, in a nutshell, is how fountain
codes, and LT codes specifically, work.
LT codes are the least efficient of the
known fountain codes, but also the
simplest to explain. If you're interested
in learning more, I'd highly recommend
reading this technical paper on fountain
codes [hn.my/mackay], as well as read-
ing about Raptor Codes [hn.my/raptor],
which add only a little complexity over
LT codes, but significantly improve their
efficiency, both in terms of transmission
overhead and computation. M

Nick Johnson is a Developer Programs Engi-
neer for Google App Engine. He regularly blogs
about interesting computer science topics
at his blog [blog.notdot.net]. When he’s not
saving the world there, he can be found on
Twitter (@nicksdjohnson) or Stack Overflow
helping folks out.

http://hn.my/mackay
http://hn.my/raptor
http://blog.notdot.net
http://twitter.com/nicksdjohnson

Unfortunate Python

By IAN WARD

yTHON 1s A wonderful language,

but some parts should really

have bright warning signs all
over them. There are features that just
can’t be used safely and others are that
are useful but people tend to use in the
Wrong ways.

Easy Stuff First
Starting with the non-controversial:
Anything that has been marked depre-
cated should be avoided. The depreca-
tion warning should have instructions
with safe alternatives you can use.
Some of the most frequent offenders
are parts of the language that make it
difficult to safely call other programs:

m o0s.system()
m 0s.popen()
= import commands

We have the excellent subprocess
module for these now, use it.

Ducks in a Row

Explicitly checking the type of a
parameter passed to a function breaks
the expected duck-typing convention
of Python. Common type checking
includes:

m isinstance(x, X)

= type(x) ==
With type() being the worse of the
two.

If you must have different behavior
for different types of objects passed, try
treating the object as the first data type
you expect, and catching the failure
if that type wasn’t that type, and then
try the second. This allows users to
create objects that are close enough to
the types you expect and still use your
code.

42 PROGRAMMING

Not Really a Vegetable

import pickle # or cPickle

Objects serialized with pickle are tied
to their implementations in the code

at that time. Restoring an object after
an underlying class has changed will
lead to undefined behavior. Unserial-
izing pickled data from an untrusted
source can lead to remote exploits. The
pickled data itself is opaque binary that
can’t be easily edited or reviewed.

This leaves only one place where
pickle makes sense — short-lived data
being passed between processes, just
like what the multiprocessing module
does.

Anywhere else, use a different
format. Use a database or use JSON
with a well-defined structure. Both are
restricted to simple data types and are
easily verified or updated outside of
your Python script.

Toys are for Children

Many people are drawn to these mod-
ules because they are part of Python’s
standard library. Some people even try
to do serious work with them.

m asyncore / asynchat
m SimpleHTTPServer

The former resembles a reasonable
asynchronous library, until you find out
there are no timers. At all. Use Twisted
instead; it’s the best we've got.

The latter makes for a neat demo by
giving you a web server in your pocket
with the one command python -m
SimpleHTTPServer. But this code was
never intended for production use and
certainly not designed to be run as a
public web server. There are plenty of
real, hardened web servers out there
that will run your Python code as a
WSGI script. Choose one of them
instead.

Foreign Concepts

import array

All the flexibility and ease of use of C
arrays, now in Python!

If you really, really need this you will
know. Interfacing with C code in an
extension module is one valid reason.

If you're looking for speed, try just
using regular Python lists and PyPy.
Another good choice is NumPy for its
much more capable array types.

Can't be Trusted
def _del (self):

The mere existence of this method
makes objects that are part of a refer-
ence cycle uncollectable by Python’s
garbage collector and could lead to
memory leaks.

Use a weakref.ref object with a
callback to run code when an object is
being removed instead.

Split Personality

reload(x)

It looks like the code you just changed
is there, except the old versions of
everything are still there too. Objects
created before the reload will still use
the code as it was when they were cre-
ated, leading to situations with inter-
esting effects that are almost impos-
sible to reproduce.

Just re-run your program. If you're
debugging at the interactive prompt,
consider debugging with a small script
and python -i instead.

Almost Reasonable

import copy

The copy module is harmless enough
when used on objects that you create
and you fully understand. The problem
is once you get in the habit of using

it, you might be tempted to use it on
objects passed to you by code you
don’t control.

Copying arbitrary objects is trouble-
some because you will often copy too
little or too much. If this object has a
reference to an external resource, it’s
unclear what copying that even means.
It can also easily lead to subtle bugs
introduced into your code by a change
outside your code.

If you need a copy of a list or a dict,
use list() or dict() because you can
be sure what you will get after they are
called. copy (), however, might return
anything, and that should scare you.

Admit You Always Hated It

if name_ == "'_main__":

This little wart has long been a staple
of many Python introductions. It lets
you treat a Python script as a module
or a module as a Python script. Clever,
sure, but it’s better to keep your scripts
and modules separate in the first place.

If you treat a module like a script,
and then something imports the
module, you're in trouble: now you
have two copies of everything in that
module.

I have used this trick to make run-
ning tests easier, but setuptools already
provides a better hook for running
tests. For scripts, setuptools has an
answer too: just give it a name and a
function to call, and you're done.

My last criticism is that a single line
of Python should never be 10 alphanu-
meric characters and 13 punctuation
characters. All those underscores are
there as a warning that some special
non-obvious language-related thing is
going on, and it’s not even necessary.

44 PROGRAMMING

Don’t Emulate stdlib
If it’s in standard library, it must be
well written, right?

May I present the implementa-
tion of namedtuple, which is a really
handy little class that, if used properly,
can significantly improve your code’s
readability:

def namedtuple(typename,
field _names, verbose=False,
rename=False):

Parse and validate the field
Validation serves
two purposes, generating
informative error messages
and preventing template
injection attacks.

names.

H OHF OH O H

Wait, what? “preventing template
injection attacks”?

This is followed by 27 lines of code
that validates field_names. And then:

template = '''class %(typename)

s(tuple):
"%(typename)s(%(argtxt)s) ' \n
__slots__ = () \n

_fields = %(field_names)r \n
def __new_ (_cls, %(argtxt)s):
'Create new instance of
%(typename)s(%(argtxt)s)’
return _tuple. new_ (_cls,
(%(argtxt)s)) \n
@classmethod
def make(cls, iterable,
new=tuple. new__, len=len):
'Make a new %(typename)
s object from a sequence or iter-
able'

result = new(cls, iterable)
if len(result) != %(num-
fields)d:
raise TypeError('Expected
%(numfields)d arguments, got %%d'
%% len(result))
return result \n
def _ repr__ (self):
'Return a nicely formatted
representation string’
return '%(typename)
s(%(reprtxt)s)' %% self \n
def _asdict(self):
'Return a new OrderedDict
which maps field names to their

values'
return
OrderedDict(zip(self. fields,
self)) \n
__dict__ = property(_asdict) \n

def _replace(_self, **kwds):
'Return a new %(typename)
s object replacing specified fields
with new values'

result = _self._
make (map(kwds.pop, %(field_names)
r, _self))

if kwds:

raise ValueError('Got
unexpected field names: %%r' %%
kwds.keys())

return result \n
def _ getnewargs__ (self):

'Return self as a plain
Used by copy and pickle.’
return tuple(self) \n\n'"''
% locals()

tuple.

Yes, that’s a class definition in a big
Python string, filled with variables from
locals(). The result is then execed in
the right namespace, and some further
magic is applied to “fix” copy() and
pickle().

[believe this code was meant as
some sort of warning to people that
would contribute code to Python —
something like “We make it look like
we know what we're doing, but we're
really just nuts” (love ya Raymond).

Trying Too Hard
hasattr(obj, 'foo')

hasattr has always been defined to
swallow all exceptions, even ones you
might be interested in (such as a Key-
boardInterrupt), and turn them into a
False return value. This interface just
can’t be fixed, so use getattr with a
sentinel value instead.

Off by One
"hello'.find('H")

str.find and str.rfind return -1 on
failure. This can lead to some really
hard-to-find bugs when combined with
containers like strings that treat -1 as
the last element. Use str.index and
str.rindex instead. M

lan Ward is an independent software developer
in Ottawa, Canada. He works primarily with
Linux, Python, Cand PostgreSQL. He is also the
author and maintainer of the Python console
user interface library Urwid.

Reprinted with permission of the original author.
First appeared in hn.my/unfortunate (excess.org)

46 PROGRAMMING

http://hn.my/unfortunate

These are your servers

ONONO,

These are your servers on Cloudkick

Any questions?

cloudkick.com
415.779.56495

support for 8 clouds + dedicated hardware

cloudkecle

the best way to manage the cloud

http://cloudkick.com

Tips for Remote
Unix Work

By BRANDON MINTERN

F YOU ARE anything like me, you

have programs running on all kinds

of different servers. You probably
have a GitHub account, a free Heroku
instance, a work desktop, a couple
website instances, and maybe even a
home server. The best part is that using
common Unix tools, you can connect
to all of them from one place.

In this article, I will review some of
the more interesting aspects of my
workflow, covering the usage of SSH,
screen, and VNC, including a guide for
getting started with VNC. I'll provide
some quick start information and
quickly progress to advanced topics
(like SSH pipes and auto-session-
creation) that even experienced Unix
users may not be aware of.

SSH to rule them all

By now you've almost certainly used
SSH. It’s the easiest way to login to
a remote machine and get instant

command line access. It’s as easy as ssh
user@example.com. You type in your
password, and you're in! But you might
not know that it can be even easier
(and more secure) than that.

Logging in via SSH without a
password

We have only recently seen websites
start to offer solutions for logging in
without a password. SSH has provided
a secure mechanism for this (based

on public-key cryptography) since its
inception. It’s pretty easy to setup once
you know how it works.

1. Generate a public-private key pair
If you haven’t already, run ssh-keygen
on your laptop, or whatever computer
you will be doing your work from.

You can just continue pressing Enter
to accept the defaults, and you can
leave the password blank (if you secure
your laptop with encryption, a lock-
ing screensaver, and a strong password,

48 PROGRAMMING

your SSH key doesn’t require a pass-
word). This will generate a public key
at ~/.ssh/id_rsa.pub and a private
key at ~/.ssh/id_rsa. The private key
should never leave your computer.

2. Copy the public key to each com-
puter you connect to

For each computer that you connect to,
run the following command:

ssh-copy-id user@example.com

(Note that you can specify -p PORT
or any other SSH arguments before
the user@example.com portion of the
above command.)

This should be the last time you ever
have to type your login password when
connecting to the remote server. From
now on, when you SSH to the remote
server, its sshd service will encrypt
some data using the public key that
you appended to authorized_keys,
and your local machine will be able to
decode that challenge with your pri-
vate key.

3. There is no step 3
It’s that easy! Don’t you wish you had
set this up a long time ago?

SSH and pipes

If you take a look at the ssh-copy-id
script, you'll see a line that roughly
translates to:

cat ~/.ssh/id_rsa.pub | ssh user@
example.com "umask ©77; test -d
~/.ssh || mkdir ~/.ssh ; cat >>
~/.ssh/authorized keys"

When you ran ssh-copy-id above,
here’s what that line did:

1.The contents of ~/.ssh/id_rsa.pub
were piped into the SSH command.

2.SSH encrypted that data and sent it
across the network to your remote
machine.

3.Everything in double quotes after the
host is a single argument to ssh; this
specified that instead of giving you an
interactive login, you instead wanted
to run a command.

4.The first portion of that command
(umask ©77; test -d ~/.ssh ||
mkdir ~/.ssh ;) created a .ssh
directory on the remote machine if it
did not already exist, ensuring that it
had the proper permissions.

5.The second portion (cat >> .ssh/
authorized_keys) received the stan-
dard input via the SSH tunnel and
appended it to the authorized_keys
file on the remote machine.

This avoids the need to use SCP and
login multiple times. SSH can do it all!
Here are some more examples to show
you some of the neat things you can do
with SSH pipe functionality.

Send the files at ~/src/ to example.
com:~/src/ without rsync or scp

cd && tar czv src | ssh example.
com 'tar xz'

Copy the remote website at example.
com:public_html/example.com to ~/
backup/example.com

mkdir -p ~/backup/
cd !$

ssh example.com 'cd public_html &&
tar cz example.com' | tar xzv

See if httpd is running on
example.com

ssh example.com 'ps ax | grep [h]
ttpd'

Other SSH tunnels

If piped data were the only thing that
could be securely tunneled over SSH
connections, that would still be useful.
But SSH can also make remote ports
seem local. Let’s say that you're logged
into example.com, and you're editing
a remote website that you'd like to
test on port 8000. But you don’t want
just anyone to be able to connect to
example.com:8000, and besides, your
firewall won’t allow it. What if you
could get a connection to example.
com, localhost:8000, but from your
local computer and browser? Well, you
can!

Create an SSH tunnel
ssh -NT -L 9000:1ocalhost:8000

example.com

Using the -L flag, you can tell SSH
to listen on a local port (9000), and

to reroute all data sent and received
on that port to example.com:8000.

To any process listening on example.
com:8000, it will look like it’s talking
to a local process (and it is: an SSH
process). So open a terminal and run
the above command, and then fire up
your browser locally and browse to loc-
alhost:9000. You will be whisked away
to example.com:8000 as if you were
working on it locally!

Let me clarify the argument to -L a
bit more. The bit before the colon is
the port on your local machine that
you will connect to in order to be
tunneled to the remote port. The part
after the second colon is the port on
the remote machine. The “localhost”
bit is the remote machine you will be
connected to, from the perspective
of example.com. When you realize
the ramifications of this, it becomes
even more exciting! Perhaps you have
a work computer to which you have
SSH access, and you have a company
intranet site at 192.168.10.10. Obvi-
ously, you can’t reach this from the
outside. Using an SSH tunnel, however,
you can!

ssh -NT -L 8080:192.168.10.10:80
work-account@work-computer.com

Now browse to localhost:8080 from
your local machine, and smile as you
can access your company intranet from
home with your laptop’s browser, just
as if you were on your work computer.

50 PROGRAMMING

But my connection sucks, or, GNU
screen
Have you ever started a long-running
command, checked in on it periodically
for a couple hours, and then watched
horrified as your connection dropped
and all the work was lost? Don’t let it
happen again. Install GNU screen on
your remote machine, and when you
reconnect you can resume your work
right where you left off (it may have
even completed while you were away).
Now, instead of launching right into
your work when you connect to your
remote machine, first start up a screen
session by running screen. From now
on, all the work you are doing is going
on inside screen. If your connection
drops, you will be detached from the
screen session, but it will continue
running on the remote machine. You
can reattach to it when you log back in
by running screen -r. If you want to
manually detach from the session but
leave it running, type Ctrl-a, d from
within the screen session.

Using screen

Screen is a complex program, and
going into everything it can do would
be a series of articles. Instead, check
out this great screen quick reference
guide [hn.my/screen]. Some of screen’s
more notable features are its ability to
allow multiple terminal buffers in a
single screen session and its scrollback

buffer.

What happened to Control-a?

Screen intercepts Control-a to enable
some pretty cool functionality. Unfor-
tunately, you may be used to using
Control-a for readline navigation. You
can now do this by pressing Ctrl-a,

a. Alternatively, you can remap it by
invoking screen with the -e option.
For example, running screen -e *jj
would cause Control-j to be inter-
cepted by screen instead of Control-a.
If you do this, just replace references to
“C-a” in the aforementioned reference
guide with whatever escape key you

defined.

Shift-PageUp is broken

Like vim and less, screen uses the
terminal window differently from
most programs, controlling the entire
window instead of just dumping

text to standard output and stan-
dard error. Unfortunately, this breaks
Shift-PageUp and Shift-PageDown in
gnome-terminal. Fortunately, we can
fix this by creating a ~/.screenrc file
with the following line in it:

termcapinfo xterm ti@:te@

And while you're mucking around in
.screenrc, you might as well add an
escape ~jj line to it, so that you can
stop typing in -e ~jj every time you
invoke screen.

http://hn.my/screen

Starting screen automatically

It's pretty easy to forget to run screen
after logging in. Personally, any time

I am using SSH to login and work
interactively, I want to be in a screen
session. We can combine SSH’s abil-
ity to run a remote command upon
login with screen’s ability to reconnect
to detached sessions. Simply create an
alias in your ~/.bashrc file:

alias sshwork='ssh -t work-user-
name@my -work-computer.com "screen
_dRII 1

This will automatically fire up a
screen session if there is not one run-
ning, and if there is one running, it
will connect to it. Detaching from the
screen session will also logout of the
remote server.

Remote graphical work
Even in spite of SSH’s port forwarding
capabilities, we still sometimes need to

use graphical applications. If you have a

fast connection or a simple GUI, pass-

ing the -Y flag to SSH could be enough

to allow you run the application on
your local desktop. Unfortunately, this
often is a very poor user experience,
and it does not work well with screen
(a GUI application started in a screen
session dies when you detach from the
screen session).

The time-tested Unix solution to this

problem is VNC. This is effectively a
combination of screen and a graphi-
cal environment. Unfortunately, it has
several drawbacks.

= It can be tricky to setup reasonably.

= It is inherently insecure, with unen-
crypted data and a weak password
feature.

= Its performance on a sub-optimal
connection is less-than-stellar.

= [t doesn’t transfer sounds over the
network.

I'm going to help you solve all of
these problems, except the sound one.
Who needs sounds, anyway?

VNC installation and setup

On the remote machine, you'll need

to install a VNC server and a decent

lightweight window manager. I chose
fluxbox and x11vnc:

sudo apt-get install x1lvnc fluxbox

The programs that are started when
you first start a VNC session are con-
trolled by the ~/.vnc/xstartup file. I
prefer something a bit better than the
defaults, so mine looks like this:

#!1/bin/sh

[-x /etc/vnc/xstartup] && exec
/etc/vnc/xstartup

[-r $HOME/.Xresources] && xrdb
$HOME/ . Xresources

netbeans &

gnome-terminal &

fluxbox &

52 PROGRAMMING

Modify this to suit your own needs.
I only invoke netbeans because it’s the
only reason I ever use a remote GUI at
all. NB: Although it may seem counter-
intuitive, it's typically best to put the
window manager command last.

You can start a VNC server with the
following command:

vhcserver -geometry WIDTHXHEIGHT

where WIDTHxHEIGHT is your
desired resolution. For me, it’s
1440x900. The first time you run this,
it will ask you to create a password. We
are going to ensure security through
other means, so you can set it to what-
ever you want. Running the above
command will give a message like “New
‘remote-machine:1 (username)’ desktop
is remote-machine:1”. The “:1” is the
display number. By adding 5900 to this,
we can determine which port the VNC
server is listening on. At this point, we
can connect to remote-machine:5901
with a vncviewer and log in to the ses-
sion we've created. We don’t want the
entire Internet to be able to connect to
our poorly-secured session, so let’s ter-
minate that VNC server session:

vncserver -kill :1

Securing the VNC server

Remember how we tunneled ports
with SSH? We can do the same thing
with VNC data. First, we'll invoke our
VNC server slightly differently:

vncserver -localhost -geometry
WIDTHXHEIGHT -SecurityTypes None

This causes the VNC server to only
accept connections that originate on
the local machine. It also indicates that
we will not need a password to con-
nect to our session; simply being logged
in locally as the user who created the
session is enough. You should now have
a VNC server running on a remote
machine listening on localhost:5901.

On your local machine, install a VNC
viewer. [personally use gvncviewer,
though I don’t particularly recommend
it. Now, to connect to that remote port,
you'll need to start an SSH tunnel on
your local machine:

ssh -NT -L 5901:1localhost:5901
remote-machine.com

We can now run the VNC viewer on
our local machine to connect via the
tunnel to our VNC session:

gvncviewer :1

Speeding up VNC?

When starting an SSH tunnel, we can
compress the data it sends by including
the -C flag. Depending on your con-
nection speed, it may be worth includ-
ing the flag in your tunnel command.
Experiment with this option and see
what works best for you.

If you are really having problems, you
might also want to check out the -def-
erUpdate option, which can delay how
often display changes are sent to the
client. For more information, man Xvnc.

Automatically starting and connecting
to your VINC session

Putting everything together, we can
create a script that does all of this for
us. Simply set the GEOMETRY and SSH_
ARGS variables appropriately (or modify
it slightly to accept them as command
line arguments).

#!/bin/bash
set -e

GEOMETRY=1440x900
SSH_ARGS='-p 22 username@remote-
server.com'

Get VNC display number. If there
is not a VNC # process running,
start one

vnc_display="$(ssh $SSH_ARGS
'ps_text="$(ps x | grep X[v]nc

| awk '"'"'{ print $6 }'"'"" |
sed s/://)"; if ["$ps_text" =

"" 1; then vncserver -localhost
-geometry '$GEOMETRY' -Security-
Types none 2>&1 | grep New | sed
Tt/ AR N[N TR /N
else echo "$ps_text"; fi')"
port="expr 5900 + $vnc_display’
ssh -NTC -L $port:localhost:$port

$SSH_ARGS &
SSH_CMD="echo $!°
sleep 3

gvncviewer :$vnc_display
kill $SSH_CMD

The vnc_display line is pretty gross,
so I'll give some explanation. It uses
SSH to connect to the remote server
and look for a running process named

xvnc: this is the running VNC server.
If there’s one running we extract the
display number. Otherwise, we start
one up with the specified geometry and
grab the display number from there.
This all happens within a single com-
mand executed by ssh, and the resulting
output is piped across the network back
into our vnc_display variable.

Either way we get the value, we
now know which port to connect to
in order to reach our VNC server.
We start our SSH tunnel and get the
resulting PID. Finally, we invoke the
vncviewer on that tunneled local port.
When the VNC viewer exits, we auto-
matically kill our SSH tunnel as well.

Concluding remarks

One of the best parts of Unix is that it
was built to be run remotely from Day
1. Just about anything you can do on
your local computer can also be done
on a remote one. By leveraging tools
like SSH, screen, and VNC, we can
make remote work as easy and conve-
nient as local work. I hope this gave
you some ideas for how you can create
a productive workflow with these very
common Unix tools. M

Brandon Mintern is Lead Software Engineer at
EasyESI, a seed-funded startup in Berkeley. His
pursuits include reverse engineering, data pro-
cessing, and language design. He presented
at the firstannual PyOhio. He currently enjoys
exploring all the Bay Area has to offer.

Reprinted with permission of the original author.
First appeared in hn.my/remoteunix (brandonmintern.com)

54 PROGRAMMING

http://hn.my/remoteunix

Being a Great Coder

By TIMOTHY DALY

0 YOURSELF A favor and lose but you'll be able to say, “How would

the “great coder” meme. you know?” At which point, the better

Or get a job at Google and you get, the worse you'll know you are.
remain blissfully unaware. Anybody who rates themselves as

One of the best books I've ever read “great” is probably on the uphill side of
about programming is called “Practic- the learning curve.
ing: A Musician’s Return to Music,” If you're trying to learn Clojure,
where the author talks about his moving into areas that are beyond your
development as a musician. He would ~ comfort zone, and trying to learn liter-
receive compliments on how great he ate programming to improve your game,
was at playing the guitar. At one point all points to the fact that you will likely
he replies, “How would you know?” reach a point where you feel that being
The better he got, the worse he knew labeled “great” is a sign that the speaker
he was. is clueless. Give it 10000 hours. H
Your opinion of how great you are at

programming will follow a bell curve. Timothy Daly is Axiom'’s lead developer. He
You'll start off coming out of college is currently running his own consulting busi-
thinking you're ok, memorize a few ness, Literate Software, while building a base
algorithms and order theory (“the of literate tools.

Google disease”) and think you're
“great” (“Google only hires great
coders”). But as you learn more you'll
discover that you have SO much more
to learn, and as you work on larger
projects you'll discover the musician’s
insight. People would rate you “great,”

55 PROGRAMMING

Reprinted with permission of the original author.
First appeared in hn.my/greatcoder

http://hn.my/greatcoder

SPECIAL

Why 13th

Chords

S THE BACKGROUND to my music

theory is more classical in

nature, it used to puzzle
me when [saw jazz chords like C9,
Bb11 or F13.1 mean, [knew what a
9th, 11th and 13th note were, but I
wondered why you'd call a note a 9th
rather than a 2nd, or a 13th rather than
a 6th and so on.

After all, when you talk about chord,
you're normally talking about notes
independent of octave. If you describe
something as a C7 chord, you're not
saying anything about whether the E
and B} are in the same octave or not.

I can’t remember when, but the
breakthrough came when I realized
that a 9th chord isn’t just a major triad
with the 2nd added, but one with the
2nd and 7th added. An 11th chord is
one with the 4th and 7th added.

By JAMES TAUBER

(Just as an aside: the fact 2+7=9 and
4+7=11 here is an unrelated coinci-
dence. An 11th is 4th+octave, but due
to the 1-based indexing used, you add
7, not 8.)

Now yes, I've seen the theory
books where they show a C9
as C+E+G+Bb+D, a C11 as
C+E+G+Bh+D+F and a C13 as
C+E+G+Bh+D+F+A, but that really
didn’t help emphasize that it’s the
existence of the 7th that makes the
chord sound like (and be described as)
a C9, C11 or C13 respectively, instead
of, say a Cadd2, Cadd4 or C6.

56 SPECIAL

The 3rd and 7th are really the defin-
ing notes of a chord in jazz, particularly
comping on piano where you expect
the bass to provide the root. So the
final light went off when I saw the clos-
ing jazz riff of Ben Folds Five’s Under-
ground notated. There were a bunch of
triads that were marked as 13th chords.
So, for example, the voicing Eb+A+D
was marked as F13.

Note that that voicing has just the
3rd, 7th and 13th. The 13th is also a
6th, but by calling the chord F13, it’s
making it clear the 7th is there as well,
which gives the chord a very different
direction it wants to go. The 7th makes
the whole chord want to resolve to a
Bh, which gives the 13th/6th (the D)
more of a suspended feel it doesn’t
have in an F6 chord.

I find not only the 13th chord a
great substitute for a 7th now, espe-
cially when it’s the dominant resolv-
ing to the tonic, but I also love the
7th+3rd+13th/6th way of voicing it
too.

I know this is jazz 101, but it was a
breakthrough moment for me. M

James Tauber is the founder and CEO of web
startup Eldarion, Inc. When not working with
software startups, websites and open source
software, he is an aspiring composer, music
theorist, mathematician and linguist. James
lives just outside of Boston with his wife but is
originally from Perth, Western Australia.

Reprinted with permission of the original author.
First appeared in hn.my/chords (jtauber.com).
Image by Mauricio Duque.

57 SPECIAL

http://hn.my/chords

N PHILADELPHIA, I spent a lot of time

waiting for elevators. [inevitably

paid a lot of attention to the con-
trol algorithms used by different eleva-
tors in different buildings.

Elevator
Algorithms

By LISA ZHANG

All elevator algorithms solve the
same type of optimization problem: if
a building has n floors and m elevators,
how could we most efficiently move
people up/down the floors? I'm sure
you already know of the simple algo-
rithm that every elevator implements,
but one can definitely improve on this.
Here’s one improvement someone
tried to make:

Example #1

This building has 1 elevator and 8
floors. The elevator was made to move
back to floor 4 when it is idle.

This is an intuitive solution. Since
there are n floors from where people
could call the elevator, why not mini-
mize the wait time by making the
elevator go back to floor n/2 when it is

idle? The problem with this argument
is that it assumes an elevator is equally
likely to be called from any of the n
floors, which is not true. In most cases,
people who use the elevator would use
it to either go down to ground floor
from the floor they’re at or up from
ground floor to the floor they should
be in. This means that approximately
half the time, elevator requests would
occur at the ground floor. A better
design is the following:

Example #2

There are no more than 10 floors (I
believe it was less) and about 6 eleva-
tors. When an elevator is idle, it moves
to the ground floor and opens its door.

This speeds things up a lot. Not only
could you avoid waiting for the eleva-
tor to get to the ground floor, you don’t
even have to press the button and wait
for the door to open! I thought this was
a great idea! An acquaintance pointed
out, though, that unsuspecting people
might mistakenly think the elevator is
broken. Well then...

The algorithm used in Example #2
focuses a lot more on people going
up rather than people going down. I
think this makes sense. Going up stairs
takes a lot more effort than going down
stairs, so people are more likely to use
the elevator to go up. However, in a
building with more floors, more people
would want to use the elevator to go
down, so having all the elevators on
ground floor is not going to help. Here’s
a solution that seems to work well:

58 SPECIAL

Example #3

This building has 2 elevators and ~12
floors. It is programmed to ensure that
at least 1 elevator is on the ground
floor at any given time. The other
elevator is often seen on floor 6, but
I'm not sure if there’s a pattern here.

This makes a lot of sense. The first
elevator takes care of the case where
people want to go up from floor 1. The
second elevator takes care of the case
where people would want to go down,
and since the elevator is at floor 6, the
wait time is reduced.

For small n and m, I really can’t think
of a better solution than the one used
in Example #3. For larger n and m,
though, it becomes more complicated:

Example #4

This building has about 38 floors and
at least 12 elevators. The elevators are
divided into 2 groups: the first group
goes to floors up to 22. The second
elevator skips all the floors until floor
22, so it stops at floors 22-38 (and the
ground floor).

It would be quite disastrous if eleva-
tors aren’t organized this way. Imagine
working on the top floor and having
to wait for the elevator to stop at
every floor in between! This elevator is
designed to go super fast from floor 1
to floor 22, making things even more
efficient.

All of these examples are real. What
I don’t understand is why so many
buildings do not have these optimiza-
tions built into their elevators. Imple-
menting these changes cost almost
nothing, and they can save a lot of
peoples’ time in the long run. M

Lisa is a pure math and applied math student
at the University of Waterloo. She is passionate
about data science, data mining, data visualiza-
tion and entrepreneurship.

Reprinted with permission of the original author.
First appeared in hn.my/elevator (lisazhang.ca)

http://hn.my/elevator

Dream. Design. Print.

MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish

Enter promo code HACKER when you set your
magazine price during the publishing process.

Please contact promo@magcloud.com with any questions.

MAGCLOUD

http://www.magcloud.com

	Contents
	FEATURES
	How Airplanes Fly

	DESIGN
	The Messy Art of UX Sketching

	PROGRAMMING
	Never Create Ruby Strings Longer Than
23 Characters
	Fountain Codes
	Unfortunate Python
	Tips for Remote Unix Work
	Being a Great Coder

	SPECIAL
	Why 13th Chord
	Elevator Algorithms

