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FEATURES

By David Anderson & Scott Eberhardt

How Airplanes Fly

Almost everyone today 
has flown in an 
airplane. Many ask 
the simple ques-

tion “what makes an airplane fly?” The 
answer one frequently gets is mislead-
ing and often just plain wrong. As an 
example, most descriptions of the 
physics of lift fixate on the shape of the 
wing (i.e. airfoil) as the key factor in 
understanding lift. The wings in these 
descriptions have a bulge on the top 
so that the air must travel farther over 
the top than under the wing. Yet we all 
know that wings fly quite well upside 

down where the shape of the wing 
is inverted. To cover for this paradox 
we sometimes see a description for 
inverted flight that is different than for 
normal flight. In reality the shape of 
the wing has little to do with how lift 
is generated and everything to do with 
efficiency in cruise and stall character-
istics. Any description that relies on the 
shape of the wing is wrong.

Let us look at two examples of 
successful wings that clearly vio-
late the descriptions that rely on the 
shape of the wing. The first example 
is a very old design. Figure 1 shows a 

Photo: Black & White Bi-Plane, flickr.com/photos/daves-f-stop/5516483143
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photograph of the Curtis 1911 model 
D type IV pusher. Clearly the air trav-
els the same distance over the top and 
the bottom of the wing. Yet this air-
plane flew and was the second airplane 
purchased by the US Army in 1911.

The second example of a wing that 
violates the idea that lift is depen-
dent on the shape of the wing is of a 
very modern wing. Figure 2 shows the 
profile of the Whitcomb Supercritical 
Airfoil (NASA/Langley SC(2)-0714). 
This wing is basically flat on top with 
the curvature on the bottom. Though 
its shape may seem contrary to the 
popular view of the shape of wings, 
this airfoil is the foundation of the 
wings modern airliners.

The emphasis on the wing shape in 
many explanations of lift is based on 
the Principle of Equal Transit Times. 
This assertion mistakenly states the 
air going around a wing must take the 
same length of time, whether going 

over or under, to get to the trailing 
edge. The argument goes that since 
the air goes farther over the top of the 
wing it has to go faster, and with Ber-
noulli’s principle we have lift. Knowing 
that equal transit times is not defend-
able the statement is often softened to 
say that since the air going over the top 
must go farther it must to faster. But, 
this is again just a variation on the idea 
of equal transit times. In reality, equal 
transit times holds only for a wing 
without lift. Figure 3 shows a simula-
tion of the airflow around a wing with 
lift.

The Bernoulli equation is a state-
ment of the conservation of energy. 
It is correct, but not applicable to the 
description of lift on a real wing. The 
wings of an 800,000 pound airplane 
are doing a great deal of work to keep 
the airplane in the air. They are adding 
a large amount of energy to the air. 
One of the requirements of the appli-
cation of the Bernoulli principle is that 
no energy is added to the system. Thus, 
the speed and pressure of the air above 
a real wing in flight are not related by 
the Bernoulli principle. Also, descrip-
tions of lift that evoke the Bernoulli 

Figure 1. Curtis 1911 model D type IV pusher

Figure 2. Whitcomb Supercritical Airfoil

Figure 3 Air over a wing with lift.

http://flickr.com/photos/daves-f-stop/5516483143
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principle depend on the shape of the 
wing. As already stated, the shape of 
the wing affects the efficiency and stall 
characteristics of the wing but not the 
lift. That is left to the angle of attack 
and speed.

Newton’s laws and lift
So, how does a wing generate lift? 
To begin to understand lift we must 
review Newton’s first and third laws. 
(We will introduce Newton’s second 
law a little later.) Newton’s first law 
states:

A body at rest will remain at rest, 
or a body in motion will continue in 
straight-line motion unless subjected to 
an external applied force.

That means, if one sees a bend in the 
flow of air, or if air originally at rest 
is accelerated into motion, a force is 
acting on it.

Newton’s third law states that:

For every action there is an equal and 
opposite reaction.

As an example, an object sitting on 
a table exerts a force on the table (its 
weight) and the table puts an equal 
and opposite force on the object to 
hold it up. In order to generate lift a 
wing must do something to the air. 
What the wing does to the air is the 
action while lift is the reaction.

Let’s compare two figures used 
to show streamlines over a wing. In 
figure 4 the air comes straight at the 

wing, bends around it, and then leaves 
straight behind the wing. We have all 
seen similar pictures, even in flight 
manuals. But, the air leaves the wing 
exactly as it appeared ahead of the 
wing. There is no net action on the 
air so there can be no lift! Figure 5 
shows the streamlines, as they should 
be drawn. The air passes over the wing 
and is bent down. Newton’s first law 
says that there must be a force on the 
air to bend it down (the action). New-
ton’s third law says that there must be 
an equal and opposite force (up) on 
the wing (the reaction). To generate lift 
a wing must divert lots of air down.

The lift of a wing is equal to the 
change in momentum of the air it is 
diverting down. Momentum is the 
product of mass and velocity (mv). 
The most common form of Newton’s 
second law is F= ma, or force equal 
mass times acceleration. The law in 
this form gives the force necessary to 
accelerate an object of a certain mass. 
An alternate form of Newton’s second 
law can be written:

Figure 4. Common depiction of airflow over a 
wing. This wing has no lift.

Figure 5. True airflow over a wing with lift 
showing upwash and downwash.



  7

The lift of a wing is proportional to the 
amount of air diverted down times the 
vertical velocity of that air.

It is that simple. For more lift the 
wing can either divert more air (mass), 
increase its vertical velocity or a com-
bination of the two. This vertical veloc-
ity behind the wing is the vertical 
component of the “downwash.” Figure 
6 shows how the downwash appears 
to the pilot (or in a wind tunnel). 
The figure also shows how the down-
wash appears to an observer on the 
ground watching the wing go by. To 
the pilot the air is coming off the wing 
at roughly the angle of attack and at 
about the speed of the airplane. To the 
observer on the ground, if he or she 
could see the air, it would be coming 
off the wing almost vertically at a rela-
tively slow speed. The greater the angle 
of attack of the wing the greater the 
vertical velocity of the air. Likewise, for 
a given angle of attack, the greater the 
speed of the wing the greater the verti-
cal velocity of the air. Both the increase 

in the speed and the increase of the 
angle of attack increase the length of 
the vertical velocity arrow. It is this 
vertical velocity that gives the wing lift.

As stated, an observer on the ground 
would see the air going almost straight 
down behind the plane. This can be 
demonstrated by observing the tight 
column of air behind a propeller, a 
household fan, or under the rotors of 
a helicopter; all of which are rotating 
wings. If the air were coming off the 
blades at an angle the air would pro-
duce a cone rather than a tight column. 
The wing develops lift by transferring 
momentum to the air. For straight and 
level flight this momentum eventually 
strikes the earth. If an airplane were 
to fly over a very large scale, the scale 
would weigh the airplane.

Let us do a back-of-the-envelope 
calculation to see how much air a 
wing might divert. Take for example 
a Cessna 172 that weighs about 2300 
lb (1045 kg). Traveling at a speed of 
140 mph (220 km/h), and assuming an 
effective angle of attack of 5 degrees, 

Figure 6. How downwash appears to a pilot and to an observer on the ground.
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we get a vertical velocity for the air of 
about 11.5 mph (18 km/h) right at the 
wing. If we assume that the average 
vertical velocity of the air diverted is 
half that value we calculate from New-
ton’s second law that the amount of 
air diverted is on the order of 5 ton/s. 
Thus, a Cessna 172 at cruise is divert-
ing about five times its own weight in 
air per second to produce lift. Think 
how much air is diverted by a 250-ton 
Boeing 777.

Diverting so much air down is a 
strong argument against lift being 
just a surface effect (that is only a 
small amount of air around the wing 
accounts for the lift), as implied by the 
popular explanation. In fact, in order 
to divert 5 ton/sec the wing of the 
Cessna 172 must accelerate all of the 
air within 18 feet (7.3 m) above the 
wing. One should remember that the 
density of air at sea level is about 2 lb 
per cubic yard (about 1kg per cubic 
meter). Figure 7 illustrates the effect 
of the air being diverted down from a 
wing. A huge hole is punched through 
the fog by the downwash from the air-
plane that has just flown over it.

So how does a thin wing divert 
so much air? When the air is bent 
around the top of the wing, it pulls on 
the air above it accelerating that air 
downward. Otherwise there would be 
voids in the air above the wing. Air is 
pulled from above. This pulling causes 
the pressure to become lower above 
the wing. It is the acceleration of the 
air above the wing in the downward 
direction that gives lift. (Why the wing 
bends the air with enough force to gen-
erate lift will be discussed in the next 
section.)

Normally, one looks at the air flowing 
over the wing in the frame of refer-
ence of the wing. In other words, to the 
pilot the air is moving and the wing is 
standing still. We have already stated 
that an observer on the ground would 
see the air coming off the wing almost 
vertically. But what is the air doing 
below the wing? Figure 8 shows an 
instantaneous snapshot of how air mol-
ecules are moving as a wing passes by. 
Remember in this figure the air is ini-
tially at rest and it is the wing moving. 
Arrow “1” will become arrow “2” and 
so on. Ahead of the leading edge, air 
is moving up (upwash). At the trailing 
edge, air is diverted down (downwash). 
Over the top the air is accelerated 
towards the trailing edge. Underneath, 
the air is accelerated forward slightly. 
Far behind the wing the air is going 
straight down.

Figure 7.  
Downwash 
and wing vorti-
ces in the fog.
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So, why does the air follow this pat-
tern? First, we have to bear in mind that 
air is considered an incompressible fluid 
for low-speed flight. That means that 
it cannot change its volume and that 
there is a resistance to the formation 
of voids. Now the air has been acceler-
ated over the top of the wing by of the 
reduction in pressure. This draws air 
from in front of the wing and expels if 
back and down behind the wing. This 
air must be compensated for, so the air 
shifts around the wing to fill in. This is 
similar to the circulation of the water 
around a canoe paddle. This circulation 
around the wing is no more the driv-
ing force for the lift on the wing than 
is the circulation in the water drives 
the paddle. Though, it is true that if 
one is able to determine the circulation 
around a wing the lift of the wing can 
be calculated. Lift and circulation are 
proportional to each other.

One observation that can be made 
from Figure 8 is that the top surface of 
the wing does much more to move the 
air than the bottom. So the top is the 
more critical surface. Thus, airplanes 
can carry external stores, such as drop 
tanks, under the wings but not on top 
where they would interfere with lift. 
That is also why wing struts under the 

wing are common but struts on the top 
of the wing have been historically rare. 
A strut, or any obstruction, on the top 
of the wing would interfere with the 
lift.

Air Bending Over a Wing
As always, simple statements often 
result in more questions. One natu-
ral question is why does the air bend 
around the wing? This question is 
probably the most challenging question 
in understanding flight and it is one of 
the key concepts.

Let us start by first looking at a 
simple demonstration. Run a small 
stream of water from a faucet and 
bring a horizontal water glass over to 
it until it just touches the water, as in 
Figure 9. As in the figure, the water will 
wrap partway around the glass. From 
Newton’s first law we know that for 
the flow of water to bend there must 
be a force on it. The force is in the 
direction of the bend.

From Newton’s third law we know 
that there must be an equal and 
opposite force acting on the glass. 
The stream of water puts a force on 
the glass that tries to pull it into the 
stream, not push it away as one might 
first expect.

Figure 8. Direction of air movement around a 
wing as seen by an observer on the ground.
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So why does the water bend around 
the glass, or air over a wing? First 
consider low-speed flight. In low-speed 
flight the forces on the air and the asso-
ciated pressures are so low that the air 
is not only considered a fluid but an 
incompressible fluid. This means that 
the volume of a mass of air remains 
constant and that flows of air do not 
separate from each other to form voids 
(gaps).

A second point to understand is that 
streamlines communicate with each 
other. A streamline, in steady-state 
flight, can be looked at as the path of a 
particle in the moving air. It is the path 
a small, light object would take in the 
airflow over the wing. The communica-
tion between streamlines is an expres-
sion of pressure and viscosity. Pressure 
is the force per area that the air exerts 
on the neighboring streamline. Viscos-
ity in a gas or liquid corresponds to 
friction between solids.

Think of two adjacent streamlines 
with different speeds. Since these 
streamlines have different velocities 
forces between them trying to speed 
up the slower streamline and slow 
down the faster streamline. The speed 
of air at the surface of the wing is 
exactly zero with respect to the surface 
of the wing. This is an expression of 

viscosity. The speed of the air increases 
with distance from the wing as shown 
in Figure 10. Now imagine the first 
non-zero velocity streamline that just 
grazes the highpoint of the top of the 
wing. If it were initially to go straight 
back and not follow the wing, there 
would be a volume of zero velocity air 
between it and the wing. Forces would 
strip this air away from the wing and 
without a streamline to replace it, the 
pressure would lower. This lowering of 
the pressure would bend the stream-
line until it followed the surface of the 
wing.

The next streamline above would 
be bent to follow the first by the same 
process, and so on. The streamlines 
increase in speed with distance from 
the wing for a short distance. This is 
on the order of 6 inch (15 cm) at the 
trailing edge of the wing of an Airbus 
A380. This region of rapidly changing 
air speed is the boundary layer. If the 
boundary layer is not turbulent, the 
flow is said to be laminar.

Thus, the streamlines are bent by a 
lowering of the pressure. This is why 
the air is bent by the top of the wing 
and why the pressure above the wing 
is lowered. This lowered pressure 
decrease with distance above the wing 
but is the basis of the lift on a wing. 

Figure 10. The variation of the speed of a fluid 
near an object

Figure 9. Water 
wrapping 
around a glass
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The lowered pressure propagates out at 
the speed of sound, causing a great deal 
of air to bend around the wing.

Two streamlines communicate on a 
molecular scale. This is an expression 
of the pressure and the viscosity of air. 
Without viscosity there would be no 
communication between streamlines 
and no boundary layer. Often, calcula-
tions of lift are made in the limit of 
zero viscosity. In these cases viscosity 
is re-introduced implicitly with the 
Kutta-Joukowski condition, which 
requires that the air come smoothly off 
at the trailing edge of the wing. Also, 
the calculations require that the air 
follows the surface of the wing which 
is another introduction of the effects of 
viscosity. One result of the near elimi-
nation of viscosity from the calcula-
tions is that there is no boundary layer 
calculated.

It should be noted that the speed 
of the uniform flow over the top of 
the wing is faster then the free-stream 
velocity, which is the velocity of the 
undisturbed air some distance from the 
wing. The bending of the air causes the 
reduction in pressure above the wing. 
This reduction in pressure causes an 
acceleration of the air. It is often taught 
that the acceleration of the air causes a 
reduction in pressure. In fact, it is the 
reduction of pressure that accelerates 
the air in agreement with Newton’s 
first law.

Let us look at the air bending around 
the wing in Figure 11. To bend the air 
requires a force. As indicated by the 

colored arrows, the direction of the 
force on the air is perpendicular to the 
bend in the air. The magnitude of the 
force is proportional to the tightness 
of the bend. The tighter the air bends 
the greater the force on it. The forces 
on the wing, as shown by the black 
arrows in the figure, have the same 
magnitude as the forces on the air but 
in the opposite direction. These forces, 
working through pressure, represent 
the mechanism in which the force is 
transferred to the wing.

Look again at Figure 11, while paying 
attention to the black arrows represent-
ing the forces on the wing. There are 
two points to notice. The first is that 
most of the lift is on the forward part 
of the wing. In fact, half of the total lift 
on a wing at subsonic speeds is typi-
cally produced in the first one-fourth 
of the chord length. The chord is the 
distance from the leading edge to the 
trailing edge of the wing. The second 
thing to notice is that the arrows on 
the leading part of the wing are tilted 
forward. Thus the force of lift is pull-
ing the wing along as well as lifting it. 
This would be nice if it were the entire 
story. Unfortunately, the horizontal 

Figure 11. Forces on the air and the corre-
sponding reaction forces on the wing



12  FEATURES

forces on the trailing part of the wing 
compensate the horizontal forces on 
the leading part of the wing.

We now have the tools to under-
stand why a wing has lift. In brief, the 
air bends around the wing producing 
downwash. Newton’s first law says that 
the bending of the air requires a force 
on the air, and Newton’s third law says 
that there is an equal and opposite 
force on the wing. That is a description 
of lift. The pressure difference across 
the wing is the mechanism in which 
lift is transferred to the wing due to the 
bending of the air.

Lift as a function of angle of attack
There are many types of wing: con-
ventional, symmetric, conventional in 
inverted flight, the early biplane wings 
that looked like warped boards, and 
even the proverbial “barn door”. In all 
cases, the wing is forcing the air down, 
or more accurately pulling air down 
from above. (although the early wings 
did have a significant contribution from 
the bottom.) What each of these wings 
has in common is an angle of attack 
with respect to the oncoming air. It is 
the angle of attack that is the primary 
parameter in determining lift.

To better understand the role of the 
angle of attack it is useful to introduce 
an “effective” angle of attack, defined 
such that the angle of the wing to 
the oncoming air that gives zero lift 
is defined to be zero degrees. If one 
then changes the angle of attack both 
up and down one finds that the lift 

is proportional to the angle. Figure 
12 shows the lift of a typical wing 
as a function of the effective angle 
of attack. A similar lift versus angle 
of attack relationship is found for all 
wings, independent of their design. 
This is true for the wing of a 747, an 
inverted wing, or your hand out the 
car window. The inverted wing can be 
explained by its angle of attack, despite 
the apparent contradiction with the 
popular explanation of lift. A pilot 
adjusts the angle of attack to adjust the 
lift for the speed and load. The role of 
the angle of attack is more important 
than the details of the wings shape in 
understanding lift. The shape comes 
into play in the understanding of stall 
characteristics and drag at high speed.

Figure 12. Lift as a function of angle of attack
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One can see in the figure that the lift 
is directly proportional to the effec-
tive angle of attack. The lift is posi-
tive (up) when the wing is tilted up 
and negative (down) when it is tilted 
down. When corrected for area and 
aspect ratio, a plot of the lift as a func-
tion of the effective angle of attack is 
essentially the same for all wings and 
all wings inverted. This is true until 
the wing approaches a stall. The stall 
begins at the point where the angle 
of attack becomes so great that the 
airflow begins to separate from the 
trailing edge of the wing. This angle is 
called the critical angle of attack and is 
marked on the figure. This separation 
of the airflow from the top of the wing 
is a stall.

The wing as air “virtual virtual 
scoop”
We now would like to introduce a new 
mental image of a wing. One is used 
to thinking of a wing as a thin blade 
that slices though the air and devel-
ops lift somewhat by magic. For this 
we would like to adopt a visualization 
aid of looking at the wing as a virtual 
scoop that intercepts a certain amount 
of air and diverts it to the angle of 
the downwash. This is not intended 
to imply that there is a real, physical 
scoop with clearly defined boundaries, 
and uniform flow. But this visualization 
aid does allow for a clear understand-
ing of how the amount diverted air 
is affected by speed and density. The 
concept of the virtual scoop does have 

a real physical basis but beyond the 
scope of this work.

The virtual scoop diverts a certain 
amount of air from the horizontal to 
roughly the angle of attack, as depicted 
in Figure 13. For wings of typical 
airplanes it is a good approximation to 
say that the area of the virtual scoop 
is proportional to the area of the 
wing. The shape of the virtual scoop is 
approximately elliptical for all wings, 
as shown in the figure. Since the lift of 
the wing is proportional to the amount 
of air diverted, the lift of is also propor-
tional to the wing’s area.

As stated before, the lift of a wing 
is proportional to the amount of air 
diverted down times the vertical veloc-
ity of that air. As a plane increases 
speed, the virtual scoop diverts more 
air. Since the load on the wing does 
not increase, the vertical velocity of the 
diverted air must be decreased pro-
portionately. Thus, the angle of attack 
is reduced to maintain a constant lift. 
When the plane goes higher, the air 
becomes less dense so the virtual scoop 
diverts less air at a given speed. Thus, 
to compensate the angle of attack must 
be increased. The concepts of this 

Figure 13. The “virtual scoop” as a visualization 
tool
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section will be used to understand lift 
in a way not possible with the popular 
explanation.

Lift requires power
When a plane passes overhead the for-
mally still air gains a downward veloc-
ity. Thus, the air is left in motion after 
the plane leaves. The air has been given 
energy. Power is energy, or work, per 
time. So, lift requires power. This power 
is supplied by the airplane’s engine (or 
by gravity and thermals for a sailplane).

How much power will we need to 
fly? If one fires a bullet with a mass, 
m, and a velocity, v, the energy given 
to the bullet is simply ½mv2. Like-
wise, the energy given to the air by the 
wing is proportional to the amount of 
air diverted down times the vertical 
velocity squared of that diverted air. 
We have already stated that the lift of 
a wing is proportional to the amount 
of air diverted times the vertical veloc-
ity of that air. Thus, the 
power needed to lift 
the airplane is propor-
tional to the load (or 
weight) times the verti-
cal velocity of the air. If 
the speed of the plane 
is doubled, the amount 
of air diverted down 
also doubles. Thus to 
maintain a constant lift, 
the angle of attack must be reduced to 
give a vertical velocity that is half the 
original. The power required for lift 
has been cut in half. This shows that 

the power required for lift becomes 
less as the airplane’s speed increases. In 
fact, we have shown that this power to 
create lift is proportional to 1/speed of 
the plane.

But, we all know that to go faster (in 
cruise) we must apply more power. 
So there must be more to power than 
the power required for lift. The power 
associated with lift is often called the 
“induced” power. Power is also needed 
to overcome what is called “parasite” 
drag, which is the drag associated with 
moving the wheels, struts, antenna, 
etc. through the air. The energy the 
airplane imparts to an air molecule on 
impact is proportional to the speed2 
(from ½mv2). The number of mol-
ecules struck per time is proportional 
to the speed. The faster one goes the 
higher the rate of impacts. Thus the 
parasite power required to overcome 
parasite drag increases as the speed3.

Figure 14. The power required for flight as a 
function of speed.
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Figure 14 shows the “power curves” 
for induced power, parasite power, 
and total power (the sum of induced 
power and parasite power). Again, the 
induced power goes as 1/speed and the 
parasite power goes as the speed3. At 
low speed the power requirements of 
flight are dominated by the induced 
power. The slower one flies the less air 
is diverted and thus the angle of attack 
must be increased to increase the verti-
cal velocity of that air. Pilots practice 
flying on the “backside of the power 
curve” so that they recognize that the 
angle of attack and the power required 
to stay in the air at very low speeds are 
considerable.

At cruise, the power requirement is 
dominated by parasite power. Since 
this goes as the speed3 an increase in 
engine size gives one a faster rate of 
climb but does little to improve the 
cruise speed of the plane. Doubling the 
size of the engine will only increase the 
cruise speed by about 25%.

Since we now know how the power 
requirements vary with speed, we can 
understand drag, which is a force. Drag 
is simply power divided by speed. 
Figure 14 shows the induced, parasite, 
and total drag as a function of speed. 
Here the induced drag varies as 1/
speed2 and parasite drag varies as the 
speed2. Taking a look at these figures 
one can deduce a few things about 
how airplanes are designed. Slower 
airplanes, such as gliders, are designed 
to minimize induced power, which 
dominates at lower speeds. Faster 

propeller-driven airplanes are more 
concerned with parasite power, and jets 
are dominated by parasite drag. (This 
distinction is outside of the scope of 
this article.)

Wing efficiency
At cruise, a non-negligible amount of 
the drag of a modern wing is induced 
drag. Parasite drag of a Boeing 747 wing 
is only equivalent to that of a 1/2-inch 
cable of the same length. One might 
ask what affects the efficiency of a 
wing. We saw that the induced power 
of a wing is proportional to the verti-
cal velocity of the air. If the area of a 
wing were to be increased, the size of 
our virtual scoop would also increase, 
diverting more air. So, for the same lift 
the vertical velocity (and thus the angle 
of attack) would have to be reduced. 
Since the induced power is propor-
tional to the vertical velocity of the air, 
it is also reduced. Thus, the lifting effi-
ciency of a wing increases with increas-
ing wing area. The larger the wing the 
less induced power required to produce 
the same lift, though this is achieved 
with and increase in parasite drag.

There is a misconception by some 
that lift does not require power. This 
comes from aeronautics in the study of 
the idealized theory of wing sections 
(airfoils). When dealing with an airfoil, 
the picture is actually that of a wing 
with infinite span. We have seen that 
the power necessary for lift decrease 
with increasing area of the wing. A wing 
of infinite span does not require power 
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for lift since it develops lift by diverting 
an infinite amount of air at near-zero 
velocity. If lift did not require power 
airplanes would have the same range 
full as they do empty, and helicopters 
could hover at any altitude and load. 
Best of all, propellers (which are rotat-
ing wings) would not require much 
power to produce thrust. Unfortunately, 
we live in the real world where both lift 
and propulsion require power.

Power and wing loading
Now let us consider the relation-
ship between wing loading and 
power. At a constant speed, if the 
wing loading is increased the verti-
cal velocity of the downwash must 
be increased to compensate. This 
is accomplished by increasing the 
angle of attack of the wing. If the 
total weight of the airplane were dou-
bled (say, in a 2g turn), and the speed 
remains constant, the vertical velocity 
of the air is doubled to compensate 
for the increased wing loading. The 
induced power is proportional to the 
load times the vertical velocity of the 
diverted air, which have both doubled. 
Thus the induced power requirement 
has increased by a factor of four! So 
induced power is proportional to the 
load2.

One way to measure the total power 
is to look at the rate of fuel consump-
tion. Figure 16 shows the fuel con-
sumption versus gross weight for a 
large transport airplane traveling at a 
constant speed (obtained from actual 

data). Since the speed is constant the 
change in fuel consumption is due 
to the change in induced power. The 
data are fitted by a constant (parasite 
power) and a term that goes as the 
load2. This second term is just what 
was predicted in our Newtonian dis-
cussion of the effect of load on induced 
power.

The increase in the angle of attack 
with increased load has a downside 
other than just the need for more 
power. As shown in Figure 12 a wing 
will eventually stall when the air can 
no longer follow the upper surface. 
That is, when the critical angle is 
reached. Figure 17 shows the angle 
of attack as a function of airspeed for 
a fixed load and for a 2-g turn. The 
angle of attack at which the plane 
stalls is constant and is not a function 
of wing loading. The angle of attack 
increases as the load and the stall speed 
increases as the square root of the load. 
Thus, increasing the load in a 2-g turn 

Figure 16. Fuel consumption as a function of 
weight for large jet at a costant speed.
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increases the speed at which the wing 
will stall by 40%. An increase in alti-
tude will further increase the angle of 
attack in a 2-g turn. This is why pilots 
practice “accelerated stalls” which 
illustrates that an airplane can stall at 
any speed, since for any speed there is 
a load that will induce a stall.

Wing vortices
One might ask what the downwash 
from a wing looks like. The downwash 
comes off the wing as a sheet and is 
related to the details on the load distri-
bution on the wing. Figure 18 shows, 
through condensation, the distribu-
tion of lift on an airplane during a 
high-g maneuver. From the figure one 
can see that the distribution of load 
changes from the root of the wing to 
the tip. Thus, the amount of air in the 
downwash must also change along the 
wing. The wing near the root is “vir-
tual scooping” up much more air than 
the tip. Since the wing near the root is 
diverting so much air the net effect is 

that the downwash sheet will begin to 
curl outward around itself, just as the 
air bends around the top of the wing 
because of the change in the velocity 
of the air. This is the wing vortex. The 
tightness of the curling of the wing 
vortex is proportional to the rate of 
change in lift along the wing. At the 
wing tip the lift must rapidly become 
zero causing the tightest curl. This is 
the wing tip vortex and is just a small 
(though often most visible) part of the 
wing vortex. Returning to Figure 7 one 
can clearly see the development of the 
wing vortices in the downwash as well 
as the wing tip vortices.

Winglets (those small vertical exten-
sions on the tips of some wings) are 
used to improve the efficiency of the 
wing by increasing the effective length, 
and thus area, of the wing. The lift of 
a normal wing must go to zero at the 
tip because the bottom and the top 
communicate around the end. The 
winglet blocks this communication so 
the lift can extend farther out on the 
wing. Since the efficiency of a wing 
increases with area, this gives increased 

Figure 17. Angle of attack versus speed for 
straight and level flight and for a 2-g turn.

Figure 18. Condensation showing the distribu-
tion of lift along a wing.
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efficiency. One caveat is that winglet 
design is tricky and winglets can actu-
ally be detrimental if not properly 
designed.

Ground effect
The concept of ground effect is well 
known to pilots. This effect is the 
increase in efficiency of a wing as it 
comes to within about a wing’s length 
of the ground. The effect increases 
with the reduction in the distance to 
the ground. A low-wing airplane will 
experience a reduction in the induced 
drag of as much as 50 percent just 
before touchdown. This reduction in 
drag just above a surface is used by 
large birds, which can often be seen 
flying just above the surface of the 
water. Pilots taking off from deep-grass 
or soft runways also use ground effect. 
The pilot is able to lift the airplane 
off the soft surface at a speed too 
slow to maintain flight out of ground 
effect. This reduces the resistance on 
the wheels and allows the airplane to 
accelerate to a higher speed before 
climbing out of ground effect.

What is the cause of this reduction 
in drag? There are two contributions 
that can be credited with the reduc-
tion in drag. The ground influences the 
flow field around the wing which, for a 
given angle of attack, increases the lift. 
But, at the same time, there is a reduc-
tion in downwash. It can be surmised 
that this additional lift must come 
from an increase in pressure between 
the wing and the ground. In addition, 

since lift is increased for a given angle 
of attack, the angle of attack can be 
reduced for the same lift, resulting in 
less downwash and less induced drag.

Ground effect introduces a funda-
mental change from the discussion of 
flight at altitude. When no ground is 
present, the relationship between lift, 
drag and downwash is straight for-
ward. But, near the ground, there is 
an action-reaction between the wing, 
the air and the ground. At altitude the 
ground is so distant that this effect 
does not exist. Near the ground this 
interaction helps produce lift and 
reduce downwash due to an increase 
in pressure below the wing. The details 
of ground effect are extremely com-
plex. Most aerospace texts devote a 
paragraph or two and don’t attempt 
to describe it in depth. The truth is 
that so much is changing in ground 
effect that it is difficult to describe by 
pointing to a single change in the air 
flow or a term in an equation. There 
is no simple way to describe how the 
airflow adjusts to satisfy the change in 
conditions.

Conclusions
Let us review what we have learned 
and get some idea of how the physical 
description has given us a greater abil-
ity to understand flight. First what have 
we learned:

■■ The amount of air diverted by the 
wing is proportional to the speed of 
the wing and the air density. 
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■■ The vertical velocity of the diverted 
air is proportional to the speed of the 
wing and the angle of attack.

■■ The lift is proportional to the 
amount of air diverted times the ver-
tical velocity of the air. 

■■ The power needed for lift is propor-
tional to the lift times the vertical 
velocity of the air. Now let us look 
at some situations from the physical 
point of view and from the perspec-
tive of the popular explanation. 

■■ The plane’s speed is reduced. The 
physical view says that the amount 
of air diverted is reduced so the angle 
of attack is increased to compensate. 
The power needed for lift is also 
increased. The popular explanation 
cannot address this.

■■ The load of the plane is increased. 
The physical view says that the 
amount of air diverted is the same 
but the angle of attack must be 
increased to give additional lift. 
The power needed for lift has also 
increased. Again, the popular expla-
nation cannot address this.

■■ A plane flies upside down. The 
physical view has no problem with 
this. The plane adjusts the angle of 
attack of the inverted wing to give 
the desired lift. The popular expla-
nation implies that inverted flight is 
impossible.

As one can see, the popular explana-
tion, which fixates on the shape of the 
wing, may satisfy many but it does not 
give one the tools to really understand 
flight. The physical description of lift 
is easy to understand and much more 
powerful. n
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long flight enthusiast. He as degrees from 
the University of Washington, Seattle, and 
a Ph.D. in physics from Columbia University. 
He has had a 30-year career in high-energy 
physics at Los Alamos National Labora-
tory, CERN in Geneva, Switzerland, and the 
Fermi National Accelerator Laboratory. 
 
Scott Eberhardt is a private pilot who works 
in high-lift aerodynamics at Boeing Commer-
cial Airplanes Product Development. He has 
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This material can be found in more detail in Un-
derstanding Flight 1st and 2nd editions by David 
Anderson and Scott Eberhardt, McGraw-Hill, 2001, 
and 2009.
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DESIGN

By Peiter Buick

The Messy Art of  
UX Sketching

I hear a lot of people talking about 
the importance of sketching when 
designing or problem-solving, yet 

it seems that very few people actually 
sketch. As a UX professional, I sketch 
every day. I often take over entire walls 
in our office and cover them with 
sketches, mapping out everything from 
context scenarios to wireframes to 
presentations.

Although starting a prototype on a 
computer is sometimes easier, it’s not 
the best way to visually problem-solve. 
When you need to ideate website lay-
outs or mobile applications or to story-
board workflows and context scenarios, 
sketching is much more efficient. It 
keeps you from getting caught up in 
the technology, and instead focuses you 
on the best possible solution, freeing 

you to take risks that you 
might not otherwise take.

Many articles discuss 
the power of sketching 
and why you should do 
it, but they don’t go into 
the how or the meth-
ods involved. Sketching 
seems straightforward, 
but there are certain ways 
to do it effectively. In this 
article, we’ll cover a col-
lection of tools and tech-
niques that I (and many 
other UX and design 
folks) use every day.My desk.
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Sketching ≠ Drawing
Some of the most effective sketches 
I’ve seen are far from perfect draw-
ings. Just like your thoughts and ideas, 
sketches are in a constant state of flux, 
evolving and morphing as you reach 
a potential solution. Don’t think that 
you have to be able to draw in order to 
sketch, although having some experi-
ence with it does help.

■■ Sketching is an expression of think-
ing and problem-solving.

■■ It’s a form of visual communication, 
and, as in all languages, some ways 
of communicating are clearer than 
others.

■■ Sketching is a skill: the more you do 
it, the better you’ll get at it.

When evaluating your sketches, ask 
yourself, “How could I better commu-
nicate these thoughts?” Getting caught 
up in evaluating your drawing ability is 
easy, but try to separate the two. Look 
at your sketch as if it were a poster. 
What’s the first thing that’s read? 
Where is the detailed info? Remember, 
the eye is drawn to the area with the 
most detail and contrast.

Just as one’s ability to enunciate 
words affects how well others under-
stand them, one’s ability to draw does 
have an impact on how communica-
tive a sketch is. The good news is that 
drawing and sketching are skills, and 
the more you do them, the better 
you’ll get.

OK, let’s get started.

Work In Layers
Often when I’ve done a sketch, the 
result looks more like a collage than a 
sketch. Efficiency in sketching comes 
from working in layers.

Technique
Start with a light-gray marker (20 to 
30% gray), and progressively add layers 
of detail with darker markers and pens.

Why?
Starting with a light-gray marker 
makes this easy. It allows you to make 
mistakes and evaluate your ideas as 
you work through a problem. Draw 
a crooked line with the light marker? 
No big deal. The lines will barely be 
noticeable by the time you’re finished 
with the sketch.

As the pages fill up with ideas, go 
back in with a darker marker (60% 
gray) or pen, and layer in additional 
details for the parts you like. This is 
also a great way to make a particular 
sketch pop beside other sketches.

Sketching in layers also keeps you 
from getting caught up in details right 
away. It forces you to decide on the 
content and hierarchy of the view first. 
If you are sketching an interface that 
contains a list, but you don’t yet know 
what will go in the list, put in a few 
squiggles. Later, you can go back in and 
sketch a few options for each list item 
and append them to the page.
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Caution
If you start drawing with a ballpoint pen 
and then go in later with a marker, the 
pen’s ink will likely smear from the alco-
hol in the marker.

As you get more confident in your 
sketching, you will become more com-
fortable and find that you don’t need 
to draw as many underlays. But I still 
find it useful because it allows you to 
experiment and evaluate ideas as you 
sketch.

Loosen Up

Technique
When sketching long lines, consider 
moving your arm and pen with your 
shoulder rather than from the elbow or 
wrist. Reserve drawing with your wrist 
for short quick lines and areas where 
you need more control.

Why?
This will allow you to draw longer, 
straighter lines. If you draw from the 
elbow, you’ll notice that the lines all 
have a slight curve to them. Placing 
two dots on the paper, one where you 
want the line to start and one where 
you want it to end, is sometimes help-
ful. Then, orient the paper, make a 
practice stroke or two, and then draw 
the line.

A bonus to drawing from the shoul-
der is that much of the motion trans-
lates to drawing on a whiteboard; so, 
in time, your straight lines will be the 
envy of everyone in the room.

Play To Your Strengths

Technique
Rotate the page before drawing a line 
in order to draw multiple angles of 
lines more easily.

Explore a variety 
of interactions 
and ideas in a 
single sketch 
using sticky notes.
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Why?
Very few people can draw lines in all 
directions equally well. Rotating the 
page allows you to draw a line in the 
range and direction that works best for 
you. Don’t try to draw a vertical line 
if you find it difficult; rotate the page 
90 degrees, and draw a horizontal one 
instead. It’s super-simple but amazingly 
powerful.

Caution
This does not translate well to a white-
board, so you’ll still need to learn to 
draw vertical lines.

Sketching Interactions

Technique
Start with a base sketch, and then use 
sticky notes to add tooltips, pop-overs, 
modal windows and other interactive 
elements.

Why?
Using sticky notes to define tooltips 
and other interactive elements lets 
you quickly define interactions and 
concepts without having to redraw the 
framework of the application. They 
are easy to move around and can be 
sketched on with the same markers 
and pens you are already using.

■■ Define multiple interactions on one 
sketch, and then strategically remove 
pieces one at a time before scanning 
them in or copying the sketch.

■■ Use different colors to represent dif-
ferent types of interaction.

■■ Is one sticky note not big enough for 
your modal window? Add another 
right next to it.

■■ Is one sticky note too big for your 
tooltip, user a ruler as a guide to 
quickly rip the note down to size.

Upon photo-
copying vari-
ous versions 
of a sketch, 
each with dif-
ferent sticky 
notes, you’ll 
end up with 
various distinct 
sketches.
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Copying And Pasting For The Real 
World
At times, you may want to manually 
redraw a UI element multiple times in 
a sketch. This is not always a bad thing, 
because it gives you the opportunity to 
quickly iterate and forces you to recon-
sider your ideas. That being said, an 
all-in-one scanner or photocopier could 
dramatically increase your efficiency.

Technique
Use a photocopier to quickly create 
templates from existing sketches or to 
redraw an area of a sketch.

Why?
A photocopier is the old-school version 
of Control + C, Control + V. It makes 
the production of templates and under-
lays more efficient. It also boosts your 
confidence, because if you mess up (and 
you will mess up), you can easily fix it.

■■ Does one part of your interface need 
to be consistently redrawn in mul-
tiple sketches? Run a few copies, 
and then sketch directly on the 
print-outs.

■■ Did you mess up a part of the 
sketch? No problem. Cover up that 
portion of the sketch with a piece of 
paper or with correction fluid, run 
off a copy, and then start sketching 
directly on the print-out.

■■ Are you working on a mobile project? 
Or do you want to make a series of 
sketches all of the same size? Create 
a layout and copy off a few rounds of 
underlays. Easier yet, print off under-
lays of devices or browsers; a good 
selection can be found in the article 
“Free Printable Sketching, Wirefram-
ing and Note-Taking PDF Templates 
8.” [hn.my/wireframe]

Sketching over a pho-
tocopy of the origi-
nal to reevaluate the 
sidebar.

http://hn.my/wireframe
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■■ Do you want to change the layout of 
a sidebar in your last five sketches? 
Sketch the new sidebar, run off a few 
copies, and then tape the new side-
bars over the old ones. It’s that easy.

■■  To use a sketch as an underlay of 
another similar one, adjust the den-
sity or darkness setting on your pho-
tocopier to run a copy of the sketch 
at 20% of it original value.

The Design Is In The Details
Use a ruler; specifically, a quilting ruler. 
Quilting rulers are translucent and are 
normally printed with a  grid screen, 
letting you see the line you’re drawing 
relative to the rest of the sketch.

Technique
Use a ruler and a light-gray marker to 
draw an underlay for a detailed sketch.

Why?
This lets you quickly draw a series of 
lines that are offset a set distance from 
each other. This works great for ele-
ments such as lists items, charts, but-
tons and anything else that needs to be 
evenly spaced. It’s like an analog ver-
sion of “smart guides.”

Technique
After using a light-gray marker to lay 
out a sketch, use a ruler and ballpoint 
pen or black marker to finalize it.

Why?
When sketching in layers, you want 
the final design or layout to “pop.” A 
ruler enables you to be more precise 
in detailed areas and ensures that long 
edges are straight.

The final sketch. 
Notice how the 
sidebar and its detail 
are darker than the 
photocopy. This is 
intentional, because it 
allows you to explore 
ideas in the context of 
the overall design.
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There is no shame in using a ruler. 
The key is knowing when to use it. 
Don’t start sketching with a ruler; 
rather, bring one in when you need the 
detail and precision. Remember, you’re 
sketching, not drawing.

Technique
Use a ruler to quickly rip paper or 
sticky notes by firmly holding the 
paper with one hand and ripping away 
the edge with the other hand.

Why?
It’s quicker then grabbing scissors; you 
already have the ruler with you; and 
you can take it through airport security.

After lightly sketching an interface 
with a light marker, finalize it or make 
one area pop by using a ruler to lay 
down darker lines.

Tell The Whole Story
Technique
Draw the application in the context of 
where and how it being used, or frame 
it with the device it will be used on.

Why?
This forces you to think about the 
environment that the application will 
be used in, instills empathy for your 
users, and establishes understand-
ing of the challenges unique to this 
application.

Quickly creating 
evenly spaced 
lines with a 
quilting ruler 
and 30% gray 
marker.
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I get it. No one wants to sketch out a 
monitor every time they draw a wire-
frame. I’m not saying you have to, but 
a few sketches with context go a long 
way. Especially with mobile devices, 
the more context you add to a sketch, 
the better. Moreover, I always sketch 
the device for a mobile interface as an 
underlay, and I often try to sketch the 
UI at full scale. This forces you to deal 
with the constraints of the device and 
makes you aware of how the user may 
be holding the device.

Caution
Drawing the surrounding environ-
ment can be challenging and requires a 
higher level of sketching competency. 
Don’t let this intimidate you. If you’re 
not comfortable sketching the environ-
ment or you find it takes too long, use 
a picture as an underlay instead.

Ditch The Sketchbook

Technique
Draw on 8.5 × 11" copy paper.

Why?
Sketches are for sharing. You can 
easily hang 8.5 × 11" sheets on a wall 
to share ideas with others or to see a 
project in its entirety. When you need 
to save a sketch or two, you can easily 
batch scan them into a computer with-
out ripping them out of the sketch-
book. Still not convinced? Copy paper 
is cheaper; it allows you to use sketches 
as underlays without photocopying; 
and you don’t have to choose between 
book-bound or spiral-bound.

Sketching ideas for a mobile appli-
cation in the context of where it 
will be used.
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What Are You Waiting For?
Sketching is not reserved for designers. 
Developers, project managers and busi-
ness analysts can get in on the fun, too. 
It’s the best way for teams to quickly 
communicate, explore and share ideas 
across disciplines. Also, I’ve found 
that others are more receptive to give 
feedback and make suggestions when 
shown sketches than when shown 
print-outs or screenshots.

Remember, it’s about getting ideas 
out, reviewing those ideas and docu-
menting them, not about creating a 
work of art. When evaluating your 
sketches, ask yourself, “How could I 
better communicate these thoughts?” 
Getting caught up in evaluating your 
drawing ability is easy, but try to sepa-
rate the two, and know that the more 
you do it, the better you’ll get.

It’s worth repeating that sketching is 
the quickest way to explore and share 
thinking with others. It focuses you 
on discovering the best possible solu-
tion, without getting caught up in the 
technology.

Go for it! Don’t get caught up in the 
tools. Make a mess. And have fun! n

Peiter Buick is Senior UX Specialist at Universal 
Mind. He is passionate about design’s ability 
to directly impact peoples lives. With a back-
ground in industrial design, he brings a unique 
perspective to the UX community. 

Reprinted with permission of the original author. 
First appeared in hn.my/sketch (smashingmagazine.com)
Images by Michael Kleinpaste.

One of the many 
walls of sketches in 
our office.

http://hn.my/sketch
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PROGRAMMING

By Pat Shaughnessy

Never Create Ruby 
Strings Longer Than  

23 Characters

Obviously this is an utterly 
preposterous statement: 
it’s hard to think of a more 

ridiculous and esoteric coding require-
ment. I can just imagine all sorts of 
amusing conversations with designers 
and business sponsors: “No… the size 
of this <input> field should be 23… 
24 is just too long!” Or: “We need to 
explain to users that their subject lines 
should be less than 23 letters…” Or: 
“Twitter got it all wrong… the 140 
limit should have been 23!”

Why in the world would I even 
imagine saying this? As silly as this 
requirement might be, there is actu-
ally a grain of truth behind it: creating 
shorter Ruby strings is actually much 
faster than creating longer ones. It 
turns out that this line of Ruby code:

str = "1234567890123456789012" + 
"x"

… is executed about twice as fast by 
the MRI 1.9.3 Ruby interpreter than 
this line of Ruby code:

str = "12345678901234567890123" + 
"x"

Huh? What’s the difference? These 
two lines look identical! Well, the dif-
ference is that the first line creates a 
new string containing 23 characters, 
while the second line creates one with 
24. It turns out that the MRI Ruby 
1.9 interpreter is optimized to handle 
strings containing 23 characters or less 
more quickly than longer strings. This 
isn’t true for Ruby 1.8.

Today I’m going to take a close look 
at the MRI Ruby 1.9 interpreter to see 
how it actually handles saving string 
values… and why this is actually true.
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Not all strings are created equal
Over the holidays I decided to read 
through the Ruby Hacking Guide 
[rhg.rubyforge.org]. If you’ve never 
heard of it, it’s a great explanation of 
how the Ruby interpreter works inter-
nally. Unfortunately, it’s written in Jap-
anese, but a few of the chapters have 
been translated into English. Chapter 
2, one of the translated chapters, was a 
great place to start since it explains all 
of the basic Ruby data types, including 
strings.

After reading through that, I decided 
to dive right into the MRI 1.9.3 C 
source code to learn more about how 
Ruby handles strings; since I use RVM, 
for me the Ruby source code is located 
under ~/.rvm/src/ruby-1.9.3-preview1. 
I started by looking at include/ruby/
ruby.h, which defines all of the basic 
Ruby data types, and string.c, which 
implements Ruby String objects.

Reading the C code, I discovered that 
Ruby actually uses three different types 
of string values, which I call:

■■ Heap Strings

■■ Shared Strings

■■ Embedded Strings

I found this fascinating! For years I’ve 
assumed every Ruby String 
object was like every other 
String object. But it turns out 
this is not true! Let’s take a 
closer look…

Heap Strings
The standard and most common way 
for Ruby to save string data is in the 
“heap.” The heap is a core concept 
of the C language: it’s a large pool 
of memory that C programmers can 
allocate from and use via a call to the 
malloc function. For example, this line 
of C code allocates a 100 byte chunk 
of memory from the heap and saves its 
memory address into a pointer:

char *ptr = malloc(100);

Later, when the C programmer is 
done with this memory, she can release 
it and return it to the system using 
free:

free(ptr);

Avoiding the need to manage 
memory in this very manual and 
explicit way is one of the biggest ben-
efits of using any high level program-
ming language, such as Ruby, Java, C#, 
etc. When you create a string value in 
Ruby code like this, for example:

str = "Lorem ipsum dolor sit amet, 
consectetur adipisicing elit"

… the Ruby interpreter creates a struc-
ture called “RString” that conceptually 
looks like this:

http://rhg.rubyforge.org
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You can see that the RString structure 
contains two values: ptr and len, but 
not the actual string data itself. Ruby 
actually saves the string character values 
themselves in some memory allocated 
from the heap, and then sets ptr to the 
location of that heap memory and len 
to the length of the string.

Here’s a simplified version of the C 
RString structure:

struct RString { 
  long len; 
  char *ptr; 
};

I’ve simplified this a lot; there are 
actually a number of other values 
saved in this C struct. I’ll discuss some 
of them next and others I’ll skip over 
for today. If you’re not familiar with 
C, you can think of struct (short for 
“structure”) as an object that contains 
a set of instance variables, except in C 
there’s no object at all – struct 
is just a chunk of memory con-
taining a few values.

I refer to this type of Ruby 
string as “Heap String” since 
the actual string data is saved 
in the heap.

Shared Strings
Another type of string value 
that the Ruby interpreter uses 
is called a “Shared String” in the Ruby 
C source code. You create a Shared 
String every time you write a line of 
Ruby code that copies one string to 
another, similar to this:

str = "Lorem ipsum dolor sit amet, 
consectetur adipisicing elit" 
str2 = str

Here the Ruby interpreter has real-
ized that you are assigning the same 
string value to two variables: str and 
str2. So in fact there’s no need to 
create two copies of the string data 
itself. Instead, Ruby creates two 
RString values that share the single 
copy of the string data. The way this 
works is that both RString structs con-
tain the same ptr value to the shared 
data… meaning both strings contain 
the same value. There’s also a shared 
value saved in the second RString 
struct that points to the first RString 
struct. There are some other details, 
which I’m not showing here, such as 
some bit mask flags that Ruby uses 
to keep track of which RStrings are 
shared and which are not.

Aside from saving memory, this also 
speeds up execution of your Ruby 
programs dramatically by avoiding the 
need to allocate more memory from 
the heap using another call to malloc. 
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malloc is actually a fairly expensive 
operation: it takes time to track down 
available memory of the proper size in 
the heap and also to keep track of it for 
freeing later.

Here’s a somewhat more accurate 
version of the C RString structure, 
including the shared value:

struct RString { 
    long len; 
    char *ptr; 
    VALUE shared; 
};

Strings that are copied from one vari-
able to another like this I call “Shared 
Strings.”

Embedded Strings
The third and last way that MRI Ruby 
1.9 saves string data is by embedding 
the characters into the RString struc-
ture itself, like this:

str3 = "Lorem ipsum dolor"

 This RString structure contains a 
character array called ary and not the 
ptr, len and shared values we saw 
above. Here’s another simplified defi-
nition of the same RString structure, 
this time containing the ary character 
array:

struct RString { 
  char ary[RSTRING_EMBED_LEN_MAX 
+ 1]; 
}

If you’re not familiar with C code, 
the syntax char ary[100] creates an 
array of 100 characters (bytes). Unlike 
Ruby, C arrays are not objects. Instead, 
they are really just a collection of bytes. 
In C you have to specify the length of 
the array you want to create ahead of 
time.

How do Embedded Strings work? 
Well, the key is the size of the ary 
array, which is set to RSTRING_EMBED_
LEN_MAX+1. If you’re running a 64-bit 
version of Ruby, RSTRING_EMBED_LEN_
MAX is set to 24. That means a short 
string like this will fit into the RString 
ary array:

str = "Lorem ipsum dolor"

… while a longer string like this will 
not:

str = "Lorem ipsum dolor sit amet, 
consectetur adipisicing elit"

How Ruby creates new string values
Whenever you create a string value in 
your Ruby 1.9 code, the interpreter goes 
through an algorithm similar to this:

■■ Is this a new string value or a copy of 
an existing string? If it’s a copy, Ruby 
creates a Shared String. This is the 
fastest option since Ruby only needs 
a new RString structure and not 
another copy of the existing string 
data.
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■■ Is this a long string or a short string? 
If the new string value is 23 charac-
ters or less, Ruby creates an Embed-
ded String. While not as fast as a 
Shared String, it’s still fast because 
the 23 characters are simply copied 
right into the RString structure and 
there’s no need to call malloc.

■■ Finally, for long string values, 24 
characters or more, Ruby creates 
a Heap String — meaning it calls 
malloc and gets some new memory 
from the heap, and then copies the 
string value there. This is the slowest 
option.

The actual RString structure
For those of you familiar with the C 
language, here’s the actual Ruby 1.9 
definition of RString:

struct RString { 
  struct RBasic basic; 
  union { 
    struct { 
      long len; 
      char *ptr; 
      union { 
        long capa; 
        VALUE shared; 
      } aux; 
    } heap; 
 
    char ary[RSTRING_EMBED_LEN_MAX 
+ 1]; 
  } as; 
};

I won’t try to explain all the code 
details here, but here are a couple 
important things to learn about Ruby 
strings from this definition:

■■ The RBasic structure keeps track of 
various important bits of information 
about this string, such as flags indi-
cating whether it’s shared or embed-
ded, and a pointer to the correspond-
ing Ruby String object structure.

■■ The capa value keeps track of the 
“capacity” of each Heap String... it 
turns out Ruby will often allocate 
more memory than is required for 
each Heap String, again to avoid 
extra calls to malloc if a string size 
changes.

■■ The use of union allows Ruby to 
EITHER save the len/ptr/capa/
shared information OR the actual 
string data itself.

■■ The value of RSTRING_EMBED_LEN_MAX 
was chosen to match the size of the 
len/ptr/capa values. That’s where 
the 23-character limit comes from.

Here’s the line of code from ruby.h 
that defines this value:

#define RSTRING_EMBED_LEN_MAX 
((int)((sizeof(VALUE)*3)/
sizeof(char)-1))

On a 64-bit machine, sizeof(VALUE) 
is 8, leading to the limit of 23 charac-
ters. This will be smaller for a 32-bit 
machine.
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Benchmarking Ruby string 
allocation
Let’s try to measure how much faster 
short strings are vs. long strings in Ruby 
1.9.3. Here’s a simple line of code that 
dynamically creates a new string by 
appending a single character onto the 
end:

new_string = str + 'x'

The new_string value will either be 
a Heap String or an Embedded String, 
depending on how long the str vari-
able’s value is. The reason I need to use 
a string concatenation operation, the + 
'x' part, is to force Ruby to allocate a 
new string dynamically. Otherwise, if I 
just used new_string = str, I would 
get a Shared String.

Now I’ll call this method from a loop 
and benchmark it:

require 'benchmark' 
 
ITERATIONS = 1000000 
 
def run(str, bench) 
  bench.report("#{str.length + 1} 
chars") do 
    ITERATIONS.times do 
      new_string = str + 'x' 
    end 
  end 
end

Here I’m using the benchmark 
library to measure how long it takes to 
call that method 1 million times. Now 
running this with a variety of different 
string lengths:

Benchmark.bm do |bench| 
  run("12345678901234567890", 
bench) 
  run("123456789012345678901", 
bench) 
  run("1234567890123456789012", 
bench) 
  run("12345678901234567890123", 
bench) 
  run("123456789012345678901234", 
bench) 
  run("1234567890123456789012345
", bench) 
  run("12345678901234567890123456
", bench) 
end

We get an interesting result:

          user       system     
total     real 
21 chars  0.250000   0.000000   
0.250000 (0.247459) 
22 chars  0.250000   0.000000   
0.250000 (0.246954) 
23 chars  0.250000   0.000000   
0.250000 (0.248440) 
24 chars  0.480000   0.000000   
0.480000 (0.478391) 
25 chars  0.480000   0.000000   
0.480000 (0.479662) 
26 chars  0.480000   0.000000   
0.480000 (0.481211) 
27 chars  0.490000   0.000000   
0.490000 (0.490404)

Note that when the string length 
is 23 or less, it takes about 250ms to 
create 1 million new strings. But when 
my string length is 24 or more, it takes 
around 480ms, almost twice as long!
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Conclusion
Don’t worry! I don’t think you should 
refactor all your code to be sure you 
have strings of length 23 or less. That 
would obviously be ridiculous. The 
speed increase sounds impressive, but 
actually the time differences I mea-
sured were insignificant until I allo-
cated 100,000s or millions of strings — 
how many Ruby applications will need 
to create this many string values? And 
even if you do need to create many 
string objects, the pain and confu-
sion caused by using only short strings 
would overwhelm any performance 
benefit you might get.

For me I really think understand-
ing something about how the Ruby 
interpreter works is just fun! I enjoyed 
taking a look through a microscope 
at these sorts of tiny details. I do also 
suspect having some understanding of 
how Matz and his colleagues actually 
implemented the language will eventu-
ally help me to use Ruby in a wiser and 
more knowledgeable way. n

Pat Shaughnessy (@pat_shaughnessy) is a 
Ruby developer working at a global manage-
ment consulting firm. Pat also writes in-depth 
articles at patshaughnessy.net, some of which 
have been featured on the Ruby Weekly news-
letter, the Ruby5 podcast and the Ruby Show.
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Here’s a graph showing some more data; the bars show how long it takes to 
allocate 1 million strings of the given length:

Reprinted with permission of the original author. 
First appeared in hn.my/23char (patshaughnessy.net)

http://twitter.com/pat_shaughnessy
http://patshaughnessy.net
http://hn.my/23char
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Reprinted with permission of the original author. 
First appeared in hn.my/23char (patshaughnessy.net)

http://hn.my/23char
http://www.getharvest.com/hackers
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By Nick JohnSon

Fountain Codes

Fountain Codes, otherwise known 
as “rateless codes,” is a way to 
take some data — a file, for 

example — and transform it into 
an effectively unlimited number of 
encoded chunks, such that you can 
reassemble the original file given any 
subset of those chunks, as long as you 
have a little more than the size of the 
original file. In other words, it lets you 
create a “fountain” of encoded data; 
a receiver can reassemble the file by 
catching enough “droplets,” regardless 
of which ones they get and which ones 
they miss.

What makes this so remarkable is 
that it allows you to send a file over 
a lossy connection — such as, say, the 
internet — in a way that doesn’t rely 
on you knowing the rate of packet loss, 
and it doesn’t require the receivers to 
communicate anything back to you 
about which packets they missed. You 

can see how this would be useful in 
a number of situations, from sending 
a static file over a broadcast medium, 
such as on-demand TV, to propagat-
ing chunks of a file amongst a large 
number of peers, like BitTorrent does.

Fundamentally, though, fountain 
codes are surprisingly simple. There are 
a number of variants, but for the pur-
poses of this article, we’ll examine the 
simplest, called an LT, or Luby Trans-
form Code. LT codes generate encoded 
blocks like this:

1.	Pick a random number, d, between 
1 and k, the number of blocks in the 
file. We’ll discuss how best to pick 
this number later.

2.	Pick d blocks at random from the file, 
and combine them together. For our 
purposes, the xor operation will work 
fine.
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3.	Transmit the combined block, along 
with information about which blocks 
it was constructed from.

That’s pretty straightforward, right? 
A lot depends on how we pick the 
number of blocks to combine together 
— called the degree distribution — but 
we’ll cover that in more detail shortly. 
You can see from the description that 
some encoded blocks will end up being 
composed of just a single source block, 
while most will be composed of several 
source blocks.

Another thing that might not be 
immediately obvious is that while we 
do have to let the receiver know what 
blocks we combined together to pro-
duce the output block, we don’t have 
to transmit that list explicitly. If the 
transmitter and receivers agree on a 
pseudo-random number generator, we 
can seed that PRNG with a randomly 
chosen seed and use that to pick the 
degree and the set of source blocks. 
Then, we just send the seed along with 
the encoded block, and our receiver 
can use the same procedure to recon-
struct the list of source blocks we used.

The decoding procedure is a little — 
but not much — more complicated:

1.	Reconstruct the list of source blocks 
that were used to construct this 
encoded block.

2.	For each source block from that list,  
xor that block with the encoded 
block if you have already decoded it, 
and remove it from the list of source 
blocks.

3.	If there are at least two source blocks 
left in the list, add the encoded block 
to a holding area.

4.	If there is only one source block 
remaining in the list, you have suc-
cessfully decoded another source 
block! Add it to the decoded file, 
and iterate through the holding list, 
repeating the procedure for any 
encoded blocks that contain it.

Let’s work through an example of 
decoding to make it clearer. Suppose 
we receive five encoded blocks, each 
one byte long, along with information 
about which source blocks each is con-
structed from. We could represent our 
data in a graph, like this:

0x48 0x48 = "H"

0x2D ?

0x24 ?

0x66 ?

0x03 ?
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 Nodes on the left represent encoded 
blocks we received, and nodes on the 
right represent source blocks. The first 
block we received, 0x48 turns out to 
consist of only one source block — the 
first source block — so we already 
know what that block was. Following 
the arrows pointing to the first source 
block, we can see that the second and 
third encoded blocks only depend on 
the first source block and one other. 
Since we now know the first source 
block, we can xor them together, giving 
us this:

 

Repeating the same procedure again, 
we can see we now know enough to 
decode the fourth encoded block, 
which depends on the second and third 
source blocks, both of which we now 
know. XORing them together lets us 
decode the fifth and final source block, 
giving us this: 

 

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 0x6F = "o"

Reprinted with permission of the original author. 
First appeared in hn.my/fountain (notdot.net)

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 ?

http://hn.my/fountain
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Finally, we can now decode the last 
remaining source block, giving us the 
rest of the message:

 Admittedly this is a fairly contrived 
example since we happened to receive 
just the blocks we needed to decode the 
message, with no extras and in a very 
convenient order. However, it serves to 
demonstrate the principle. I’m sure you 
can see how this applies to larger blocks 
and larger files quite simply.

I mentioned earlier that selecting 
the degree distribution, which is the 
number of source blocks each encoded 
block should consist of, is quite impor-
tant. Ideally, we need to generate a 
few encoded blocks that have just one 

source block so decoding can get started, 
and a majority of encoded blocks that 
depend on a few others. It turns out 
such an ideal distribution exists, and is 
called the ideal soliton distribution.

Unfortunately, the ideal soliton distri-
bution isn’t quite so ideal in practice, 
as random variations make it likely 
that there will be source blocks that 
are never included, or that decoding 
will stall when it runs out of known 
blocks. A variation on the ideal soliton 
distribution, called the robust soliton 
distribution, improves on this, generat-
ing more blocks with very few source 
blocks and also generating a few blocks 
that combine all or nearly all of the 
source blocks to facilitate decoding the 
last few source blocks.

That, in a nutshell, is how fountain 
codes, and LT codes specifically, work. 
LT codes are the least efficient of the 
known fountain codes, but also the 
simplest to explain. If you’re interested 
in learning more, I’d highly recommend 
reading this technical paper on fountain 
codes [hn.my/mackay], as well as read-
ing about Raptor Codes [hn.my/raptor], 
which add only a little complexity over 
LT codes, but significantly improve their 
efficiency, both in terms of transmission 
overhead and computation. n

Nick Johnson is a Developer Programs Engi-
neer for Google App Engine. He regularly blogs 
about interesting computer science topics 
at his blog [blog.notdot.net]. When he’s not 
saving the world there, he can be found on 
Twitter (@nicksdjohnson) or Stack Overflow 
helping folks out. 

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 0x6C = "I"

0x03 0x6F = "o"

http://hn.my/mackay
http://hn.my/raptor
http://blog.notdot.net
http://twitter.com/nicksdjohnson
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By Ian Ward

Unfortunate Python

Python is a wonderful language, 
but some parts should really 
have bright warning signs all 

over them. There are features that just 
can’t be used safely and others are that 
are useful but people tend to use in the 
wrong ways. 

Easy Stuff First
Starting with the non-controversial: 
Anything that has been marked depre-
cated should be avoided. The depreca-
tion warning should have instructions 
with safe alternatives you can use. 

Some of the most frequent offenders 
are parts of the language that make it 
difficult to safely call other programs: 

■■ os.system()

■■ os.popen()

■■ import commands

We have the excellent subprocess 
module for these now, use it. 

Ducks in a Row
Explicitly checking the type of a 
parameter passed to a function breaks 
the expected duck-typing convention 
of Python. Common type checking 
includes: 

■■ isinstance(x, X)

■■ type(x) == X

With type() being the worse of the 
two. 

If you must have different behavior 
for different types of objects passed, try 
treating the object as the first data type 
you expect, and catching the failure 
if that type wasn’t that type, and then 
try the second. This allows users to 
create objects that are close enough to 
the types you expect and still use your 
code.  
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Not Really a Vegetable

import pickle # or cPickle

Objects serialized with pickle are tied 
to their implementations in the code 
at that time. Restoring an object after 
an underlying class has changed will 
lead to undefined behavior. Unserial-
izing pickled data from an untrusted 
source can lead to remote exploits. The 
pickled data itself is opaque binary that 
can’t be easily edited or reviewed. 

This leaves only one place where 
pickle makes sense — short-lived data 
being passed between processes, just 
like what the multiprocessing module 
does. 

Anywhere else, use a different 
format. Use a database or use JSON 
with a well-defined structure. Both are 
restricted to simple data types and are 
easily verified or updated outside of 
your Python script. 

Toys are for Children
Many people are drawn to these mod-
ules because they are part of Python’s 
standard library. Some people even try 
to do serious work with them. 

■■ asyncore / asynchat 

■■ SimpleHTTPServer 

The former resembles a reasonable 
asynchronous library, until you find out 
there are no timers. At all. Use Twisted 
instead; it’s the best we’ve got. 

The latter makes for a neat demo by 
giving you a web server in your pocket 
with the one command python -m 
SimpleHTTPServer. But this code was 
never intended for production use and 
certainly not designed to be run as a 
public web server. There are plenty of 
real, hardened web servers out there 
that will run your Python code as a 
WSGI script. Choose one of them 
instead. 

Foreign Concepts

import array

All the flexibility and ease of use of C 
arrays, now in Python! 

If you really, really need this you will 
know. Interfacing with C code in an 
extension module is one valid reason. 

If you’re looking for speed, try just 
using regular Python lists and PyPy. 
Another good choice is NumPy for its 
much more capable array types. 

Can't be Trusted

def __del__(self):

The mere existence of this method 
makes objects that are part of a refer-
ence cycle uncollectable by Python’s 
garbage collector and could lead to 
memory leaks. 

Use a weakref.ref object with a 
callback to run code when an object is 
being removed instead. 
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Split Personality

reload(x)

It looks like the code you just changed 
is there, except the old versions of 
everything are still there too. Objects 
created before the reload will still use 
the code as it was when they were cre-
ated, leading to situations with inter-
esting effects that are almost impos-
sible to reproduce. 

Just re-run your program. If you’re 
debugging at the interactive prompt, 
consider debugging with a small script 
and python -i instead. 

Almost Reasonable

import copy

The copy module is harmless enough 
when used on objects that you create 
and you fully understand. The problem 
is once you get in the habit of using 
it, you might be tempted to use it on 
objects passed to you by code you 
don’t control. 

Copying arbitrary objects is trouble-
some because you will often copy too 
little or too much. If this object has a 
reference to an external resource, it’s 
unclear what copying that even means. 
It can also easily lead to subtle bugs 
introduced into your code by a change 
outside your code. 

If you need a copy of a list or a dict, 
use list() or dict() because you can 
be sure what you will get after they are 
called. copy(), however, might return 
anything, and that should scare you. 

Admit You Always Hated It

if __name__ == '__main__':

This little wart has long been a staple 
of many Python introductions. It lets 
you treat a Python script as a module 
or a module as a Python script. Clever, 
sure, but it’s better to keep your scripts 
and modules separate in the first place. 

If you treat a module like a script, 
and then something imports the 
module, you’re in trouble: now you 
have two copies of everything in that 
module. 

I have used this trick to make run-
ning tests easier, but setuptools already 
provides a better hook for running 
tests. For scripts, setuptools has an 
answer too: just give it a name and a 
function to call, and you’re done. 

My last criticism is that a single line 
of Python should never be 10 alphanu-
meric characters and 13 punctuation 
characters. All those underscores are 
there as a warning that some special 
non-obvious language-related thing is 
going on, and it’s not even necessary. 
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Don’t Emulate stdlib
If it’s in standard library, it must be 
well written, right? 

May I present the implementa-
tion of namedtuple, which is a really 
handy little class that, if used properly, 
can significantly improve your code’s 
readability: 

def namedtuple(typename, 
field_names, verbose=False, 
rename=False): 
  # Parse and validate the field  
  # names. Validation serves  
  # two purposes, generating  
  # informative error messages  
  # and preventing template    
  # injection attacks.

Wait, what? “preventing template 
injection attacks”? 

This is followed by 27 lines of code 
that validates field_names. And then: 

template = '''class %(typename)
s(tuple): 
   '%(typename)s(%(argtxt)s)' \n 
   __slots__ = () \n 
   _fields = %(field_names)r \n 
   def __new__(_cls, %(argtxt)s): 
       'Create new instance of 
%(typename)s(%(argtxt)s)' 
       return _tuple.__new__(_cls, 
(%(argtxt)s)) \n 
   @classmethod 
   def _make(cls, iterable, 
new=tuple.__new__, len=len): 
       'Make a new %(typename)
s object from a sequence or iter-
able' 

       result = new(cls, iterable) 
       if len(result) != %(num-
fields)d: 
       raise TypeError('Expected 
%(numfields)d arguments, got %%d' 
%% len(result)) 
       return result \n 
   def __repr__(self): 
       'Return a nicely formatted 
representation string' 
       return '%(typename)
s(%(reprtxt)s)' %% self \n 
   def _asdict(self): 
       'Return a new OrderedDict 
which maps field names to their 
values' 
       return 
OrderedDict(zip(self._fields, 
self)) \n 
   __dict__ = property(_asdict) \n 
   def _replace(_self, **kwds): 
       'Return a new %(typename)
s object replacing specified fields 
with new values' 
       result = _self._
make(map(kwds.pop, %(field_names)
r, _self)) 
       if kwds: 
           raise ValueError('Got 
unexpected field names: %%r' %% 
kwds.keys()) 
       return result \n 
   def __getnewargs__(self): 
       'Return self as a plain 
tuple.  Used by copy and pickle.' 
       return tuple(self) \n\n''' 
% locals()
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Yes, that’s a class definition in a big 
Python string, filled with variables from 
locals(). The result is then execed in 
the right namespace, and some further 
magic is applied to “fix” copy() and 
pickle(). 

I believe this code was meant as 
some sort of warning to people that 
would contribute code to Python — 
something like “We make it look like 
we know what we’re doing, but we’re 
really just nuts” (love ya Raymond).

Trying Too Hard

hasattr(obj, 'foo')

hasattr has always been defined to 
swallow all exceptions, even ones you 
might be interested in (such as a Key-
boardInterrupt), and turn them into a 
False return value. This interface just 
can’t be fixed, so use getattr with a 
sentinel value instead. 

Off by One

'hello'.find('H')

str.find and str.rfind return -1 on 
failure. This can lead to some really 
hard-to-find bugs when combined with 
containers like strings that treat -1 as 
the last element. Use str.index and 
str.rindex instead. n

Ian Ward is an independent software developer 
in Ottawa, Canada. He works primarily with 
Linux, Python, C and PostgreSQL. He is also the 
author and maintainer of the Python console 
user interface library Urwid.

Reprinted with permission of the original author. 
First appeared in hn.my/unfortunate (excess.org)

http://hn.my/unfortunate
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By Brandon Mintern

If you are anything like me, you 
have programs running on all kinds 
of different servers. You probably 

have a GitHub account, a free Heroku 
instance, a work desktop, a couple 
website instances, and maybe even a 
home server. The best part is that using 
common Unix tools, you can connect 
to all of them from one place.

In this article, I will review some of 
the more interesting aspects of my 
workflow, covering the usage of SSH, 
screen, and VNC, including a guide for 
getting started with VNC. I’ll provide 
some quick start information and 
quickly progress to advanced topics 
(like SSH pipes and auto-session-
creation) that even experienced Unix 
users may not be aware of.

SSH to rule them all
By now you’ve almost certainly used 
SSH. It’s the easiest way to login to 
a remote machine and get instant 

command line access. It’s as easy as ssh 
user@example.com. You type in your 
password, and you’re in! But you might 
not know that it can be even easier 
(and more secure) than that.

Logging in via SSH without a 
password
We have only recently seen websites 
start to offer solutions for logging in 
without a password. SSH has provided 
a secure mechanism for this (based 
on public-key cryptography) since its 
inception. It’s pretty easy to setup once 
you know how it works.

1. Generate a public-private key pair
If you haven’t already, run ssh-keygen 
on your laptop, or whatever computer 
you will be doing your work from. 
You can just continue pressing Enter 
to accept the defaults, and you can 
leave the password blank (if you secure 
your laptop with encryption, a lock-
ing screensaver, and a strong password, 
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your SSH key doesn’t require a pass-
word). This will generate a public key 
at ~/.ssh/id_rsa.pub and a private 
key at ~/.ssh/id_rsa. The private key 
should never leave your computer.

2. Copy the public key to each com-
puter you connect to
For each computer that you connect to, 
run the following command:

ssh-copy-id user@example.com

(Note that you can specify -p PORT 
or any other SSH arguments before 
the user@example.com portion of the 
above command.)

This should be the last time you ever 
have to type your login password when 
connecting to the remote server. From 
now on, when you SSH to the remote 
server, its sshd service will encrypt 
some data using the public key that 
you appended to authorized_keys, 
and your local machine will be able to 
decode that challenge with your pri-
vate key.

3. There is no step 3
It’s that easy! Don’t you wish you had 
set this up a long time ago?

SSH and pipes
If you take a look at the ssh-copy-id 
script, you’ll see a line that roughly 
translates to:

cat ~/.ssh/id_rsa.pub | ssh user@
example.com "umask 077; test -d 
~/.ssh || mkdir ~/.ssh ; cat >> 
~/.ssh/authorized_keys"

When you ran ssh-copy-id above, 
here’s what that line did:

1.	The contents of ~/.ssh/id_rsa.pub 
were piped into the SSH command.

2.	SSH encrypted that data and sent it 
across the network to your remote 
machine.

3.	Everything in double quotes after the 
host is a single argument to ssh; this 
specified that instead of giving you an 
interactive login, you instead wanted 
to run a command.

4.	The first portion of that command 
(umask 077; test -d ~/.ssh || 
mkdir ~/.ssh ;) created a .ssh 
directory on the remote machine if it 
did not already exist, ensuring that it 
had the proper permissions.

5.	The second portion (cat >> .ssh/
authorized_keys) received the stan-
dard input via the SSH tunnel and 
appended it to the authorized_keys 
file on the remote machine.

This avoids the need to use SCP and 
login multiple times. SSH can do it all! 
Here are some more examples to show 
you some of the neat things you can do 
with SSH pipe functionality.

Send the files at ~/src/ to example.
com:~/src/ without rsync or scp

cd && tar czv src | ssh example.
com 'tar xz'
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Copy the remote website at example.
com:public_html/example.com to ~/
backup/example.com

mkdir -p ~/backup/ 
 
cd !$ 
 
ssh example.com 'cd public_html && 
tar cz example.com' | tar xzv

See if httpd is running on  
example.com

ssh example.com 'ps ax | grep [h]
ttpd'

Other SSH tunnels
If piped data were the only thing that 
could be securely tunneled over SSH 
connections, that would still be useful. 
But SSH can also make remote ports 
seem local. Let’s say that you’re logged 
into example.com, and you’re editing 
a remote website that you’d like to 
test on port 8000. But you don’t want 
just anyone to be able to connect to 
example.com:8000, and besides, your 
firewall won’t allow it. What if you 
could get a connection to example.
com, localhost:8000, but from your 
local computer and browser? Well, you 
can!

Create an SSH tunnel

ssh -NT -L 9000:localhost:8000 
example.com

Using the -L flag, you can tell SSH 
to listen on a local port (9000), and 

to reroute all data sent and received 
on that port to example.com:8000. 
To any process listening on example.
com:8000, it will look like it’s talking 
to a local process (and it is: an SSH 
process). So open a terminal and run 
the above command, and then fire up 
your browser locally and browse to loc-
alhost:9000. You will be whisked away 
to example.com:8000 as if you were 
working on it locally!

Let me clarify the argument to -L a 
bit more. The bit before the colon is 
the port on your local machine that 
you will connect to in order to be 
tunneled to the remote port. The part 
after the second colon is the port on 
the remote machine. The “localhost” 
bit is the remote machine you will be 
connected to, from the perspective 
of example.com. When you realize 
the ramifications of this, it becomes 
even more exciting! Perhaps you have 
a work computer to which you have 
SSH access, and you have a company 
intranet site at 192.168.10.10. Obvi-
ously, you can’t reach this from the 
outside. Using an SSH tunnel, however, 
you can!

ssh -NT -L 8080:192.168.10.10:80 
work-account@work-computer.com

Now browse to localhost:8080 from 
your local machine, and smile as you 
can access your company intranet from 
home with your laptop’s browser, just 
as if you were on your work computer.
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But my connection sucks, or, GNU 
screen
Have you ever started a long-running 
command, checked in on it periodically 
for a couple hours, and then watched 
horrified as your connection dropped 
and all the work was lost? Don’t let it 
happen again. Install GNU screen on 
your remote machine, and when you 
reconnect you can resume your work 
right where you left off (it may have 
even completed while you were away).

Now, instead of launching right into 
your work when you connect to your 
remote machine, first start up a screen 
session by running screen. From now 
on, all the work you are doing is going 
on inside screen. If your connection 
drops, you will be detached from the 
screen session, but it will continue 
running on the remote machine. You 
can reattach to it when you log back in 
by running screen -r. If you want to 
manually detach from the session but 
leave it running, type Ctrl-a, d from 
within the screen session.

Using screen
Screen is a complex program, and 
going into everything it can do would 
be a series of articles. Instead, check 
out this great screen quick reference 
guide [hn.my/screen]. Some of screen’s 
more notable features are its ability to 
allow multiple terminal buffers in a 
single screen session and its scrollback 
buffer.

What happened to Control-a?
Screen intercepts Control-a to enable 
some pretty cool functionality. Unfor-
tunately, you may be used to using 
Control-a for readline navigation. You 
can now do this by pressing Ctrl-a, 
a. Alternatively, you can remap it by 
invoking screen with the -e option. 
For example, running screen -e ^jj 
would cause Control-j to be inter-
cepted by screen instead of Control-a. 
If you do this, just replace references to 
“C-a” in the aforementioned reference 
guide with whatever escape key you 
defined.

Shift-PageUp is broken
Like vim and less, screen uses the 
terminal window differently from 
most programs, controlling the entire 
window instead of just dumping 
text to standard output and stan-
dard error. Unfortunately, this breaks 
Shift-PageUp and Shift-PageDown in 
gnome-terminal. Fortunately, we can 
fix this by creating a ~/.screenrc file 
with the following line in it:

termcapinfo xterm ti@:te@

And while you’re mucking around in 
.screenrc, you might as well add an 
escape ^jj line to it, so that you can 
stop typing in -e ^jj every time you 
invoke screen.

http://hn.my/screen


52  PROGRAMMING

Starting screen automatically
It’s pretty easy to forget to run screen 
after logging in. Personally, any time 
I am using SSH to login and work 
interactively, I want to be in a screen 
session. We can combine SSH’s abil-
ity to run a remote command upon 
login with screen’s ability to reconnect 
to detached sessions. Simply create an 
alias in your ~/.bashrc file:

alias sshwork='ssh -t work-user-
name@my-work-computer.com "screen 
-dR"'

This will automatically fire up a 
screen session if there is not one run-
ning, and if there is one running, it 
will connect to it. Detaching from the 
screen session will also logout of the 
remote server.

Remote graphical work
Even in spite of SSH’s port forwarding 
capabilities, we still sometimes need to 
use graphical applications. If you have a 
fast connection or a simple GUI, pass-
ing the -Y flag to SSH could be enough 
to allow you run the application on 
your local desktop. Unfortunately, this 
often is a very poor user experience, 
and it does not work well with screen 
(a GUI application started in a screen 
session dies when you detach from the 
screen session).

The time-tested Unix solution to this 
problem is VNC. This is effectively a 
combination of screen and a graphi-
cal environment. Unfortunately, it has 
several drawbacks.

■■ It can be tricky to setup reasonably.

■■ It is inherently insecure, with unen-
crypted data and a weak password 
feature.

■■ Its performance on a sub-optimal 
connection is less-than-stellar.

■■ It doesn’t transfer sounds over the 
network.

I’m going to help you solve all of 
these problems, except the sound one. 
Who needs sounds, anyway?

VNC installation and setup
On the remote machine, you’ll need 
to install a VNC server and a decent 
lightweight window manager. I chose 
fluxbox and x11vnc:

sudo apt-get install x11vnc fluxbox

The programs that are started when 
you first start a VNC session are con-
trolled by the ~/.vnc/xstartup file. I 
prefer something a bit better than the 
defaults, so mine looks like this:

#!/bin/sh 
[ -x /etc/vnc/xstartup ] && exec 
/etc/vnc/xstartup 
[ -r $HOME/.Xresources ] && xrdb 
$HOME/.Xresources 
netbeans & 
gnome-terminal & 
fluxbox &
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Modify this to suit your own needs. 
I only invoke netbeans because it’s the 
only reason I ever use a remote GUI at 
all. NB: Although it may seem counter-
intuitive, it’s typically best to put the 
window manager command last.

You can start a VNC server with the 
following command:

vncserver -geometry WIDTHxHEIGHT

where WIDTHxHEIGHT is your 
desired resolution. For me, it’s 
1440x900. The first time you run this, 
it will ask you to create a password. We 
are going to ensure security through 
other means, so you can set it to what-
ever you want. Running the above 
command will give a message like “New 
‘remote-machine:1 (username)’ desktop 
is remote-machine:1”. The “:1” is the 
display number. By adding 5900 to this, 
we can determine which port the VNC 
server is listening on. At this point, we 
can connect to remote-machine:5901 
with a vncviewer and log in to the ses-
sion we’ve created. We don’t want the 
entire Internet to be able to connect to 
our poorly-secured session, so let’s ter-
minate that VNC server session:

vncserver -kill :1

Securing the VNC server
Remember how we tunneled ports 
with SSH? We can do the same thing 
with VNC data. First, we’ll invoke our 
VNC server slightly differently:

vncserver -localhost -geometry 
WIDTHxHEIGHT -SecurityTypes None

This causes the VNC server to only 
accept connections that originate on 
the local machine. It also indicates that 
we will not need a password to con-
nect to our session; simply being logged 
in locally as the user who created the 
session is enough. You should now have 
a VNC server running on a remote 
machine listening on localhost:5901.

On your local machine, install a VNC 
viewer. I personally use gvncviewer, 
though I don’t particularly recommend 
it. Now, to connect to that remote port, 
you’ll need to start an SSH tunnel on 
your local machine:

ssh -NT -L 5901:localhost:5901 
remote-machine.com

We can now run the VNC viewer on 
our local machine to connect via the 
tunnel to our VNC session:

gvncviewer :1

Speeding up VNC?
When starting an SSH tunnel, we can 
compress the data it sends by including 
the -C flag. Depending on your con-
nection speed, it may be worth includ-
ing the flag in your tunnel command. 
Experiment with this option and see 
what works best for you.

If you are really having problems, you 
might also want to check out the -def-
erUpdate option, which can delay how 
often display changes are sent to the 
client. For more information, man Xvnc.
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Automatically starting and connecting 
to your VNC session
Putting everything together, we can 
create a script that does all of this for 
us. Simply set the GEOMETRY and SSH_
ARGS variables appropriately (or modify 
it slightly to accept them as command 
line arguments).

#!/bin/bash 
set -e 
 
GEOMETRY=1440x900 
SSH_ARGS='-p 22 username@remote-
server.com' 
 
# Get VNC display number. If there 
is not a VNC # process running, 
start one 
vnc_display="$(ssh $SSH_ARGS 
'ps_text="$(ps x | grep X[v]nc 
| awk '"'"'{ print $6 }'"'"' | 
sed s/://)"; if [ "$ps_text" = 
"" ]; then vncserver -localhost 
-geometry '$GEOMETRY' -Security-
Types none 2>&1 | grep New | sed 
'"'"'s/^.*:\([^:]*\)$/\1/'"'"'; 
else echo "$ps_text"; fi')" 
port=`expr 5900 + $vnc_display` 
ssh -NTC -L $port:localhost:$port 
$SSH_ARGS & 
SSH_CMD=`echo $!` 
sleep 3 
gvncviewer :$vnc_display 
kill $SSH_CMD

The vnc_display line is pretty gross, 
so I’ll give some explanation. It uses 
SSH to connect to the remote server 
and look for a running process named 

Xvnc: this is the running VNC server. 
If there’s one running we extract the 
display number. Otherwise, we start 
one up with the specified geometry and 
grab the display number from there. 
This all happens within a single com-
mand executed by ssh, and the resulting 
output is piped across the network back 
into our vnc_display variable.

Either way we get the value, we 
now know which port to connect to 
in order to reach our VNC server. 
We start our SSH tunnel and get the 
resulting PID. Finally, we invoke the 
vncviewer on that tunneled local port. 
When the VNC viewer exits, we auto-
matically kill our SSH tunnel as well.

Concluding remarks
One of the best parts of Unix is that it 
was built to be run remotely from Day 
1. Just about anything you can do on 
your local computer can also be done 
on a remote one. By leveraging tools 
like SSH, screen, and VNC, we can 
make remote work as easy and conve-
nient as local work. I hope this gave 
you some ideas for how you can create 
a productive workflow with these very 
common Unix tools. n

Brandon Mintern is Lead Software Engineer at 
EasyESI, a seed-funded startup in Berkeley. His 
pursuits include reverse engineering, data pro-
cessing, and language design. He presented 
at the first annual PyOhio. He currently enjoys 
exploring all the Bay Area has to offer.

Reprinted with permission of the original author. 
First appeared in hn.my/remoteunix (brandonmintern.com)

http://hn.my/remoteunix
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By Timothy Daly

Being a Great Coder

Do yourself a favor and lose 
the “great coder” meme. 
Or get a job at Google and 

remain blissfully unaware. 
One of the best books I’ve ever read 

about programming is called “Practic-
ing: A Musician’s Return to Music,” 
where the author talks about his 
development as a musician. He would 
receive compliments on how great he 
was at playing the guitar. At one point 
he replies, “How would you know?” 
The better he got, the worse he knew 
he was. 

Your opinion of how great you are at 
programming will follow a bell curve. 
You’ll start off coming out of college 
thinking you’re ok, memorize a few 
algorithms and order theory (“the 
Google disease”) and think you’re 
“great” (“Google only hires great 
coders”). But as you learn more you’ll 
discover that you have SO much more 
to learn, and as you work on larger 
projects you’ll discover the musician’s 
insight. People would rate you “great,” 

but you’ll be able to say, “How would 
you know?” At which point, the better 
you get, the worse you’ll know you are. 

Anybody who rates themselves as 
“great” is probably on the uphill side of 
the learning curve. 

If you’re trying to learn Clojure, 
moving into areas that are beyond your 
comfort zone, and trying to learn liter-
ate programming to improve your game, 
all points to the fact that you will likely 
reach a point where you feel that being 
labeled “great” is a sign that the speaker 
is clueless. Give it 10000 hours. n

Timothy Daly is Axiom’s lead developer. He 
is currently running his own consulting busi-
ness, Literate Software, while building a base 
of literate tools.

Reprinted with permission of the original author.  
First appeared in hn.my/greatcoder

http://hn.my/greatcoder
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SPECIAL

By JAMES TAUBER 

Why 13th 

As the background to my music 
theory is more classical in 
nature, it used to puzzle 

me when I saw jazz chords like C9, 
B♭11 or F13. I mean, I knew what a 
9th, 11th and 13th note were, but I 
wondered why you’d call a note a 9th 
rather than a 2nd, or a 13th rather than 
a 6th and so on. 

After all, when you talk about chord, 
you’re normally talking about notes 
independent of octave. If you describe 
something as a C7 chord, you’re not 
saying anything about whether the E 
and B♭ are in the same octave or not. 

I can’t remember when, but the 
breakthrough came when I realized 
that a 9th chord isn’t just a major triad 
with the 2nd added, but one with the 
2nd and 7th added. An 11th chord is 
one with the 4th and 7th added. 

(Just as an aside: the fact 2+7=9 and 
4+7=11 here is an unrelated coinci-
dence. An 11th is 4th+octave, but due 
to the 1-based indexing used, you add 
7, not 8.) 

Now yes, I’ve seen the theory 
books where they show a C9 
as C+E+G+B♭+D, a C11 as 
C+E+G+B♭+D+F and a C13 as 
C+E+G+B♭+D+F+A, but that really 
didn’t help emphasize that it’s the 
existence of the 7th that makes the 
chord sound like (and be described as) 
a C9, C11 or C13 respectively, instead 
of, say a Cadd2, Cadd4 or C6. 

Chords
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Reprinted with permission of the original author.  
First appeared in hn.my/chords (jtauber.com).  
Image by Mauricio Duque.

The 3rd and 7th are really the defin-
ing notes of a chord in jazz, particularly 
comping on piano where you expect 
the bass to provide the root. So the 
final light went off when I saw the clos-
ing jazz riff of Ben Folds Five’s Under-
ground notated. There were a bunch of 
triads that were marked as 13th chords. 
So, for example, the voicing E♭+A+D 
was marked as F13. 

Note that that voicing has just the 
3rd, 7th and 13th. The 13th is also a 
6th, but by calling the chord F13, it’s 
making it clear the 7th is there as well, 
which gives the chord a very different 
direction it wants to go. The 7th makes 
the whole chord want to resolve to a 
B♭, which gives the 13th/6th (the D) 
more of a suspended feel it doesn’t 
have in an F6 chord. 

I find not only the 13th chord a 
great substitute for a 7th now, espe-
cially when it’s the dominant resolv-
ing to the tonic, but I also love the 
7th+3rd+13th/6th way of voicing it 
too. 

I know this is jazz 101, but it was a 
breakthrough moment for me. n

James Tauber is the founder and CEO of web 
startup Eldarion, Inc. When not working with 
software startups, websites and open source 
software, he is an aspiring composer, music 
theorist, mathematician and linguist. James 
lives just outside of Boston with his wife but is 
originally from Perth, Western Australia.

http://hn.my/chords
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In Philadelphia, I spent a lot of time 
waiting for elevators. I inevitably 
paid a lot of attention to the con-

trol algorithms used by different eleva-
tors in different buildings.

All elevator algorithms solve the 
same type of optimization problem: if 
a building has n floors and m elevators, 
how could we most efficiently move 
people up/down the floors? I’m sure 
you already know of the simple algo-
rithm that every elevator implements, 
but one can definitely improve on this. 
Here’s one improvement someone 
tried to make:

Example #1 
This building has 1 elevator and 8 
floors. The elevator was made to move 
back to floor 4 when it is idle.

This is an intuitive solution. Since 
there are n floors from where people 
could call the elevator, why not mini-
mize the wait time by making the 
elevator go back to floor n/2 when it is 

idle? The problem with this argument 
is that it assumes an elevator is equally 
likely to be called from any of the n 
floors, which is not true. In most cases, 
people who use the elevator would use 
it to either go down to ground floor 
from the floor they’re at or up from 
ground floor to the floor they should 
be in. This means that approximately 
half the time, elevator requests would 
occur at the ground floor. A better 
design is the following:

Example #2 
There are no more than 10 floors (I 
believe it was less) and about 6 eleva-
tors. When an elevator is idle, it moves 
to the ground floor and opens its door.

This speeds things up a lot. Not only 
could you avoid waiting for the eleva-
tor to get to the ground floor, you don’t 
even have to press the button and wait 
for the door to open! I thought this was 
a great idea! An acquaintance pointed 
out, though, that unsuspecting people 
might mistakenly think  the elevator is 
broken. Well then...

The algorithm used in Example #2 
focuses a lot more on people going 
up rather than people going down. I 
think this makes sense. Going up stairs 
takes a lot more effort than going down 
stairs, so people are more likely to use 
the elevator to go up. However, in a 
building with more floors, more people 
would want to use the elevator to go 
down, so having all the elevators on 
ground floor is not going to help. Here’s 
a solution that seems to work well:

By Lisa Zhang

Elevator 
Algorithms 
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Example #3 
This building has 2 elevators and ~12 
floors. It is programmed to ensure that 
at least 1 elevator is on the ground 
floor at any given time. The other 
elevator is often seen on floor 6, but 
I’m not sure if there’s a pattern here.

This makes a lot of sense. The first 
elevator takes care of the case where 
people want to go up from floor 1. The 
second elevator takes care of the case 
where people would want to go down, 
and since the elevator is at floor 6, the 
wait time is reduced.

For small n and m, I really can’t think 
of a better solution than the one used 
in Example #3. For larger n and m, 
though, it becomes more complicated:

Example #4 
This building has about 38 floors and 
at least 12 elevators. The elevators are 
divided into 2 groups: the first group 
goes to floors up to 22. The second 
elevator skips all the floors until floor 
22, so it stops at floors 22-38 (and the 
ground floor).

It would be quite disastrous if eleva-
tors aren’t organized this way. Imagine 
working on the top floor and having 
to wait for the elevator to stop at 
every floor in between! This elevator is 
designed to go super fast from floor 1 
to floor 22, making things even more 
efficient.

All of these examples are real. What 
I don’t understand is why so many 
buildings do not have these optimiza-
tions built into their elevators. Imple-
menting these changes cost almost 
nothing, and they can save a lot of 
peoples’ time in the long run. n

Lisa is a pure math and applied math student 
at the University of Waterloo. She is passionate 
about data science, data mining, data visualiza-
tion and entrepreneurship.

http://hn.my/elevator
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