MONTH LY Issue 23 April 2012

©ee (=)

_ www.hotgloo.com v web-based wireframing ~ Q

#wireframes #mockups #prototypes
#interactive #collaborative #easy-to-use

RIA
Get 50% off first 3 months* with code
0 0 0 hghackers at HotGloo.com

The Future of Wireframing * for new accounts used before 05/31/2012

http://www.hotgloo.com/?pk_campaign=gloo_hackers

HARVEST

i =: O

TIMESHEETS INVOICES REPORTS

wngl
“'“4"1'/“‘]
1%@ IPHONE / ANDROID

GOOGLE APPS WEB BROWSER

DESKTOP WIDGET TWITTER

Learn more at www.getHarvest.com/hackers

http://www.hotgloo.com/?pk_campaign=gloo_hackers
http://www.getharvest.com/hackers

Curator

Lim Cheng Soon

Contributors
Alex Walker
Tom Ryder
Nathan Marz
Nick Johnson
David Nolen
Yann Esposito
James Yu
Tom Blomfield
Des Traynor
Valdis Krebs

Proofreaders
Emily Griffin
Sigmarie Soto

lllustrators
Teagan White
John Schwegel

Printer
MagCloud

HACKER MONTHLY is the print magazine version

of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising Published by
ads@hackermonthly.com Netizens Media
46, Taylor Road,
11600 Penang,
Contact Malaysia.
contact@hackermonthly.com

MONTHLY Issue 23 April 2012

Cover lllustration: Teagan White (teaganwhite.com)

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://teaganwhite.com

Contents

FEATURES

06 The Cicada Principle

By ALEX WALKER

PROGRAMMING SPECIAL

12 Vim Anti-Patterns 32 Automate Everything

By TOM RYDER By TOM BLOMFIELD

14 Suffering-Oriented Programming 34 Criticism and Two Way Streets

By NATHAN MARZ By DES TRAYNOR

17 Spatial Indexing with Quadtrees 36 Uncloaking a Slumlord Conspiracy with
& Hilbert Curves Social Network Analysis

By NICK JOHNSON By VALDIS KREBS

22 Comparing JavaScript, CoffeeScript
& ClojureScript
By DAVID NOLEN

24 Haskell Web Programming:
AYesod Tutorial
By YANN ESPOSITO

30 Designing Great APl Docs
By JAMES YU

lllustration by John Schwegel (johnschwegel.com)

For links to Hacker News dicussions, visit hackermonthly.com/issue-23

http://hackermonthly.com/issue-23
http://johnschwegel.com

FEATURES

The Cicada Principle

The Art of Seamless Tiles

By ALEX WALKER

FEW YEARS AGO, I read

some interesting stuff on

periodical cicadas. We

generally don’t see a lot
of these little guys, as they spend the vast
majority of their lives quietly tunneling away
underground and munching on tree roots.

However, depending on the species, every

7,13, or 17 years these periodical cicadas
simultaneously emerge en masse, transform
into noisy, flying creatures, find a mate, and
die not long after.

While this is a rather rock & roll ending for
our nerdy cicada, it raises an obvious ques-
tion: is it just by chance that they adopted 7,
11, or 13-year life cycles, or are those num-
bers somehow special?

As it turns out, these numbers have some-

thing in common. They’re all prime num-

bers — numbers that can only be divided by
themselves and 1 (thatis, 2,3,5,7,11, 13,
17,19, 23, and so on).

But why does that matter?

Research has shown that the
populations of creatures that eat
cicadas — typically birds, spiders,
wasps, fish and snakes — often have
shorter 2-6 year cycles of boom and
bust.

So, if our cicadas were to emerge,
say, every 12 years, any predator
that works in either 2, 3, 4 or 6 year
cycles would be able to synchronize
their boom years with this regular
cicada feast. In fact, they’d probably
name a public holiday after it called
Cicada Day.

That'’s not much fun if you're a
cicada.

On the other hand, if a brood
of 17-year cicadas was unlucky
enough to emerge during a bumper
3-year wasp season, it will be 51
years before that event occurs again.
In the intervening years, our cicadas
can happily emerge in their tens of
thousands, completely overwhelm
the local predator population, and
be mostly left in peace.

Resourceful little guys, eh?

That'’s great. But what has all
this got to do with web design?
A few weeks ago we looked at the
process of making seamless tiles
[hn.my/tiles]. As super-useful as
seamless tiles are, it can be tough to
get the balance just right.

On one hand, you want to keep
the file dimensions as small as pos-
sible to best take advantage of the
tiling effect. However, when you
notice a distinctive feature — for
instance, a knot in some woodgrain
— repeating at regular intervals, it
really breaks the illusion of organic
randomness.

Maybe we borrow some ideas
from cicadas to break that pattern?

Generating Organic Randomness with CSS

Example 1:

Enough talk. Here’s a quick proof-of-concept. This is not supposed to be
visually splendid, but it does a good job of showing what'’s going on. Keep-
ing the “cicada principle” in mind, I've made three square, semi-transparent
PNGs of 29px, 37px, and 53px respectively, and set them up as multiple
backgrounds on the HTML element of a test page.

B 29-a.png (2.0kb) l]

® 37-a.png (1.7kb)

®m 53-a.png (2.5kb)

html {
background-image: url(29-a.png),url(37-a.png), url(53-a.png);

padding:0; margin:0; height: 100%;
}
'III“ ““‘ “ “‘ I‘ ““‘ ||‘|““|‘|

And here’s the result.

As you can see, the tiles overlap and interact to generate new patterns and
colors. And as we’re using magical prime numbers, this pattern will not
repeat for a long, long time.

Exactly how long? 29px x 37px x 53px... or 56,869px!

Now this was something of a revelation to me. I actually had to triple-
check my calculations, but the math is rock solid. Remember these are
tiny graphics — less than 7kb in total — yet they are generating an area of
original texture of almost 57,000 pixels wide.

You can imagine what happens if you were to add in a fourth layer of
tiling — let’s say a 43px tile. Or maybe you can’t imagine it, as the num-
bers start getting a little brutal and are liable to slap you about the ears if
you stare at them too long.

Suffice it to say, you'll get a number more relevant to planet terraforma-
tion than web design.

Ok. So, abstract, geometric stripes are nice and all, but how else can you
apply this idea?

http://hn.my/tiles

Example 2

Let’s take a more photo-realistic For layer two, the Obviously this is a larger image
example that we've probably all prime number we're in both pixel dimension and file
seen at some point: the red velvet going to use is three. I'm size, but it still only tips the scale at
theatre curtain. I found a nice going to pick out a new around 32kb — not outrageous by
curtain graphic here to use as a start section of curtain and any measure.
point. Looking at our curtain you place it inside a trans- '
can see it breaks into roughly equal ~ parent PNG that is three I 1(: u;tilyzd
vertical units. ruffle units wide. I've : 7-}1Imit-wi de
For this example I'm going to feathered the right and | tile

refer to this distance as one “ruffle left edges so it blends I
unit,” and (unlike the first example) smoothly with the] i & 5
" . . A 3-unit- |
it's going to be more important background. The result- wide tile |
than the strict pixel dimensions of ing file comes in a tick I
the images we're working with. under 15kb. I

|

) £

Two layers of tiling curtain — an
improvement

Coining a new measurement system

— the “ruffle unit When we overlay this tile on

First, I'm going to pick out one our bottom layer we certainly get
of these ruffles and convert it into an improved result. There’s still an
a seamless tile. It's a JPEG and it unnaturally regular pattern appar-
weighs in at a tidy Skb. ent, but it’s starting to break down

a little.

The magic number for our third
layer is seven.

We’re creating a new transpar-
ent PNG seven ruffle units wide,
and I'm going to drop in two new
sections of ruffle image at positions
3 and 6. If that sounds confusing,
the diagram next should clear things
One layer tiling curtain: Not exactly up a bit. Again, I've feathered the
impressive edges on the image to help it blend
with the lower layers.

Rendered alone, this graphic
is everything we don’t like about
tiling backgrounds. While there
are no obvious visible join, it’s
very mechanical and wholly
unconvincing.

8 FEATURES

The final result

Above’s what happens when we tile this graphic
over the first two layers. I'm pretty happy with that
result. True, your eye can pick out small sections of
image that seem to repeat (because they do), but the
underlying pattern becomes so complicated that your
eyes stops searching for the similarities.

To look at it another way, if we treat each ruffle
purely as a number, the number pattern it produces
looks like this: 1,2,3,1,2,6,1,2,1,3,2,1,6,2,1, 1,
31,1,61,1,2,3,.

There is a pattern there but it’s very difficult to
discern.

In this example, a practically endless curtain back-
ground has cost us a grand total of just 53kb. And of
course, it would be relatively trivial to add a fourth
layer — perhaps using 11 units — if we wanted to.
However, I'm not convinced that’s warranted here.

Also bear this in mind: this example uses the one of
the simplest possible sets of prime number — 1, 3, and
7. If we were to use, let's say, 11, 13, and 17, we could
build in much more complex variation for a given
distance. It really just comes down to the scale of the
curtain we choose versus the screen width.

Example 3

My last example is less about pure practical applica-
tions, and more about having some fun with primes.
I'm not going to break down the theory again, as the
core concept is the same as the first two examples, but
you're more than welcome to deconstruct it in FireBug.

2,200 years ago Emperor Qin Shi Huang, constructed
an 8,000 man terracotta army to guard his tomb. Each
soldier, chariot and weapon is a one-off, hand-crafted
creation.

Using simple CSS, prime numbers, and handful of
images, we're going to raise our own mighty army.
What it might lack in stature, it makes up for in sheer
weight of numbers.

I give you... my Mighty Legion of Lego!

The legion is built from just eight images that mingle
and weave together to produce thousands of permuta-
tions. It uses:

2 images for the background tiles
2 images for the legs

2 images for torsos

2 images for the heads

The M1ghty Leglon of Lego

Summary

Playing around with this idea, I've
come up with some basic principles
that seem to work. First, your stack-
ing order tends to work best when
it'’s constructed like an upside-down
pyramid.

The stacking order model

You can afford to make the
bottom layer quite small and repeti-
tive as much of it gets overwritten
by the layers above. In fact, it’s
likely that only 20-40% will remain
unobscured.

On the other hand, your upper-
most layer should always have the
largest image dimensions but also
the most thinly-scattered imagery,
as these image elements will never
be blocked out by other layers. It's
also probably best not to include
highly-distinctive, eye-catching
detail on your uppermost layer.
Keep it scarce and generic.

Either way, some trial and error is
almost always required.

Browser Support

I've kept the markup simple by
applying multiple backgrounds to
the HTML element. This is sup-
ported by all the current main
browsers (Firefox 4, Chrome 10,
IE9, Opera 11, Safari 5) but obvi-
ously not all older versions.

However if backward compat-
ibility is a prerequisite, tiling the
html, body and perhaps a single
container div element might be a
viable option. While the container
element might be non-semantic, it’s
potentially giving you huge sitewide
value for a small concession. That’s
your call.

These three examples are the
first ideas that came to my mind,
but I'm sure there are some much
cleverer takes on the idea. Perhaps:

® An endless cityscape

® Nonrepeating woodgrain

Star fields

Densely layered jungle

Cloudscapes

Lastly, check out the Cicada
Project [designfestival.com/cicada]
to see where our community has
taken this idea! M

Alex has been a front-end developer since
the table-olithic era. He enjoys doing
strange things to CSS and then writing
about it.

Reprinted with permission of the original author.
First appeared in hn.my/cicada (designfestival.com)

10 FEATURES

http://designfestival.com/cicada
http://duckduckgo.com
http://hn.my/cicada

Google tracks you. We don't.

http://duckduckgo.com

PROGRAMMING

Vim Anti-Patterns

HE BENEFITS OF getting

to grips with Vim are

immense in terms of
editing speed and maintaining
your “flow” when you're on a roll,
whether writing code, poetry, or
prose, but because the learning
curve is so steep for a text editor,
it's very easy to retain habits from
your time learning the editor that
stick with you well into mastery.
Because Vim makes you so fast and
fluent, it’s especially hard to root
these out because you might not
even notice them, but it’s worth
it. Here I'll list some of the more
common ones.

Moving One Line at a Time

If you have to move more than a
couple of lines, moving one line at
a time by holding down j or k is
inefficient. There are many more
ways to move vertically in Vim.

[find that the two most useful
are moving by paragraph and by
screenful, but this depends on how
far and how precisely you have to
move.

= { — Move to start of previous
paragraph or code block.

® } — Move to end of next para-
graph or code block.

By TOM RYDER

® Ctrl+F — Move forward one
screenful.

® Ctrl+B — Move backward one
screenful.

If you happen to know precisely
where you want to go, navigating by
searching is the way to go, search-
ing forward with / and backward
with ?.

It’s always useful to jump back
to where you were, as well, which
is easily enough done with ** (two
backticks), or gi to go to the last
place you inserted text. If you like,
you can even go back and forth
through your entire change list of
positions with g; and g,.

Moving One Character at a Time
Similarly, moving one character at
a time with h and 1 is often a waste
when you have t and f:

® t<char> — Move forward until
the next occurrence of the
character.

® f<char> — Move forward over
the next occurrence of the
character.

® T<char> — Move backward until
the previous occurrence of the
character.

® F<char> — Move backward over
the previous occurrence of the
character.

Moving wordwise with w, W, b, B,
e, and E is better, too. Again, search-
ing to navigate is good here, and
don’t forget you can yank, delete
or change forward or backward to a
search result:

y/search<Enter>
y?search<Enter>
d/search<Enter>
d?search<Enter>
c/search<Enter>
c?search<Enter>

Searching for the Word Under
the Cursor

Don'’t bother typing it, or yanking/
pasting it; just use * or #. It's dizzy-
ing how much faster this feels when
you use it enough for it to become
automatic.

12 PROGRAMMING

Deleting, Then Inserting
Deleting text with intent to replace
it by entering insert mode immedi-
ately afterward isn’t necessary:

d2wi

It’s quicker and tidier to use c for
change:

c2w

This has the added benefit of
making the entire operation repeat-
able with the . command.

Using the Arrow Keys

Vim lets you use the arrow keys

to move around in both insert and
normal mode, but once you're used
to using hjk1 to navigate, moving
to the arrow keys to move around
in text feels clumsy; you should

be able to spend the vast majority
of a Vim session with your hands
firmly centered around home row.
Similarly, while the Home and End
keys work the same way they do in
most editors, there’s no particular
reason to use them when functional
equivalents are closer to home in ~
and $.

So wean yourself off the arrow
keys, by the simple expedient of
disabling them entirely, at least
temporarily:

noremap <Up> <nop>

noremap <Down> <nop>
noremap <Left> <nop>
noremap <Right> <nop>

The benefits of sticking to home
row aren’t simply in speed; it feels
nicer to be able to rest your wrists
in front of the keyboard and not
have to move them too far, and for
some people it has even helped
prevent repetitive strain injury.

Moving in Insert Mode

There’s an additional benefit to the
above in that it will ease you into
thinking less about insert mode as
a mode in which you move around;
that’s what normal mode is for. You
should, in general, spend as little
time in insert mode as possible.
When you want to move, you'll

get in the habit of leaving insert
mode, and moving around far more
efficiently in normal mode instead.
This distinction also helps to keep
your insert operations more atomic,
and hence more useful to repeat.

Moving to Escape

The Escape key on modern key-
boards is a lot further from home
row than it was on Bill Joy’s
keyboard back when he designed

vi. Hitting Escape is usually unnec-
essary; Ctrl+[is a lot closer, and
more comfortable. It doesn’t take
long using this combination instead
to make reaching for Escape as you
did when you were a newbie feel
very awkward. You might also con-
sider mapping the otherwise pretty
useless Caps Lock key to be another
Escape key in your operating
system, or even mapping uncom-
mon key combinations like jj to
Escape. I feel this is a bit drastic, but
it works well for a lot of people:

inoremap jj <Esc>

Moving to the Start or End of
the Line, Then Inserting

Just use I and A. Again, these make
the action repeatable for other
lines which might need the same
operation.

Reprinted with permission of the original author. First appeared in hn.my/vap (sanctum.geek.nz)

Entering Insert Mode, Then
Opening a New Line

Just use o and 0 to open a new line
below and above respectively, and
enter insert mode on it at the same
time.

Entering Insert Mode to Delete
Text

This is a pretty obvious contradic-
tion. Instead, delete the text by
moving to it and using d with an
appropriate motion or text object.
Again, this is repeatable, and means
you're not holding down Backspace.
In general, if you're holding down a
key in Vim, there’s probably a faster
way.

Repeating Commands or
Searches

Just type @: for commands or n/N
for searches; Vim doesn’t forget
what your last search was as soon as
you stop flicking through results. If
it wasn’t your most recent com-
mand or search but it’s definitely in
your history, just type q: or g/, find
it in the list, and hit Enter.

Repeating Substitutions
Just type &.

Repeating Macro Calls
Just type @@.

These are really only just a few
of the common traps to avoid to
increase your speed and general
efficiency with the editor without
requiring plugins or substantial
remappings. M

Tom Ryder is a Linux systems administrator
and web developer from New Zealand.
He's an enthusiastic fan of the Vim text
editor, the Bash shell, and free software
development tools. He blogs regularly at
“Arabesque” [blog.sanctum.geek.nz].

http://blog.sanctum.geek.nz
http://hn.my/vap

Suffering-Oriented
Programming

OMEONE ASKED ME an inter-

esting question the other

day: “How did you justify
taking such a huge risk on building
Storm [hn.my/storm] while work-
ing on a startup?” (Storm is a real-
time computation system). [can see
how from an outsider’s perspective
investing in such a massive project
seems extremely risky for a startup.
From my perspective, though,
building Storm wasn't risky at all. It
was challenging, but not risky.

I follow a style of development
that greatly reduces the risk of big
projects like Storm. I call this style
“suffering-oriented programming.”
Suffering-oriented programming
can be summarized like so: don’t
build technology unless you feel
the pain of not having it. It applies
to the big, architectural decisions
as well as the smaller everyday pro-
gramming decisions. Suffering-ori-
ented programming greatly reduces
risk by ensuring that you're always
working on something important,
and it ensures that you are well-
versed in a problem space before
attempting a large investment.

By NATHAN MARZ

I have a mantra for suffering-
oriented programming: “First make
it possible. Then make it beautiful.
Then make it fast.”

First Make It Possible
When encountering a problem
domain with which you're unfa-
miliar, it’s a mistake to try to build
a “general” or “extensible” solution
right off the bat. You just don’t
understand the problem domain
well enough to anticipate what
your needs will be in the future.
You'll make things generic that
needn’t be, adding complexity and
wasting time.

It’s better to just “hack things
out” and be very direct about solv-

ing the problems you have at hand.

This allows you to get done what
you need to get done and avoid
wasted work. As you're hacking
things out, you'll learn more and
more about the intricacies of the
problem space.

The “make it possible” phase for
Storm was one year of hacking out
a stream processing system using
queues and workers. We learned

about guaranteeing data processing
using an “ack” protocol. We learned
to scale our real-time computations
with clusters of queues and work-
ers. We learned that sometimes you
need to partition a message stream
in different ways, sometimes ran-
domly and sometimes using a hash/
mod technique that makes sure the
same entity always goes to the same
worker.

We didn’t even know we were
in the “make it possible” phase. We
were just focused on building our
products. The pain of the queues
and workers system became acute
very quickly though. Scaling the
queues and workers system was
tedious, and the fault-tolerance was
nowhere near what we wanted. It
was evident that the queues and
workers paradigm was not at the
right level of abstraction, as most
of our code had to do with routing
messages and serialization and not
the actual business logic we cared
about.

At the same time, developing
our product drove us to discover
new use cases in the “real-time

14 PROGRAMMING

http://hn.my/storm

computation” problem space. We
built a feature for our product that
would compute the reach of a URL
on Twitter. Reach is the number of
unique people exposed to a URL
on Twitter. It’s a difficult computa-
tion that can require hundreds of
database calls and tens of millions
of impressions to distinct just for
one computation. Our original
implementation that ran on a single
machine would take over a minute
for hard URLs, and it was clear that
we needed a distributed system of
some sort to parallelize the compu-
tation to make it fast.

One of the key realizations that
sparked Storm was that the “reach
problem” and the “stream process-
ing” problem could be unified by a
simple abstraction.

Then Make It Beautiful
You develop a “map” of the prob-
lem space as you explore it by
hacking things out. Over time, you
acquire more and more use cases
within the problem domain and
develop a deep understanding of
the intricacies of building these
systems. This deep understanding
can guide the creation of “beautiful”
technology to replace your existing
systems, alleviate your suffering,
and enable new systems/features
that were too hard to build before.
The key to developing the
“beautiful” solution is figuring out
the simplest set of abstractions that
solve the concrete use cases you
already have. It’s a mistake to try
to anticipate use cases you don’t
actually have or else you'll end up
over-engineering your solution.
As a rule of thumb, the bigger the
investment you're trying to make,
the deeper you need to understand
the problem domain and the more
diverse your use cases need to be.

Otherwise you risk the second-
system effect [hn.my/sse].
“Making it beautiful” is where
you use your design and abstrac-
tion skills to distill the problem
space into simple abstractions
that can be composed together. I
view the development of beautiful
abstractions as similar to statisti-
cal regression: you have a set of
points on a graph (your use cases)
and you're looking for the simplest
curve that fits those points (a set of
abstractions).

The more use cases you have,
the better you'll be able to find the
right curve to fit those points. If you
don’t have enough points, you're
likely to either overfit or underfit
the graph, leading to wasted work
and over-engineering.

A big part of making it beautiful
is understanding the performance
and resource characteristics of the
problem space. This is one of the
intricacies you learn in the “making
it possible” phase, and you should
take advantage of that learning
when designing your beautiful
solution.

With Storm, I distilled the real-
time computation problem domain
into a small set of abstractions:
streams, spouts, bolts, and topolo-
gies. I devised a new algorithm
for guaranteeing data process-
ing that eliminated the need for

intermediate message brokers, the
part of our system that caused the
most complexity and suffering.
That both stream processing and
reach, two very different problems
on the surface, mapped so elegantly
to Storm was a strong indicator that
I was onto something big.

I took additional steps to acquire
more use cases for Storm and
validate my designs. I canvassed
other engineers to learn about the
particulars of the real-time prob-
lems they were dealing with. I
didn’t just ask people I knew. I also
tweeted out that [was working on
a new real-time system and wanted
to learn about other people’s use
cases. This led to a lot of interest-
ing discussions that educated me
more on the problem domain and
validated my design ideas.

Then Make It Fast
Once you've built out your beauti-
ful design, you can safely invest
time in profiling and optimization.
Doing optimization too early will
just waste time, because you still
might rethink the design. This is
called premature optimization.
“Making it fast” isn’t about the
high level performance characteris-
tics of a system. The understanding
of those issues should have been
acquired in the “make it possible”
phase and designed for in the “make
it beautiful” phase. “Making it fast”
is about micro-optimizations and
tightening up the code to be more
resource efficient. So you might
worry about things like asymp-
totic complexity in the “make it
beautiful” phase and focus on the
constant-time factors in the “make
it fast” phase.

http://hn.my/sse

Rinse and Repeat
Suffering-oriented programming is
a continuous process. The beauti-
ful systems you build give you
new capabilities, which allow
you to “make it possible” in new
and deeper areas of the problem
space. This feeds learning back to
the technology. You often have to
tweak or add to the abstractions
you've already come up with to
handle more and more use cases.

Storm has gone through many
iterations like this. When we first
started using Storm, we discov-
ered that we needed the capabil-
ity to emit multiple, independent
streams from a single component.
We discovered that the addition of
a special kind of stream called the
“direct stream” would allow Storm
to process batches of tuples as a
concrete unit. Recently I developed
“transactional topologies” which
go beyond Storm’s at-least-once
processing guarantee and allow
exactly-once messaging semantics
to be achieved for nearly arbitrary
real-time computation.

By its nature, hacking things out
in a problem domain you don’t
understand so well and constantly
iterating can lead to some sloppy
code. The most important char-
acteristic of a suffering-oriented
programmer is a relentless focus
on refactoring. This is critical to
prevent accidental complexity from
sabotaging the codebase.

Conclusion

Use cases are everything in suffer-
ing-oriented programming. They’re
worth their weight in gold. The
only way to acquire use cases is
through gaining experience through
hacking.

There’s a certain evolution most
programmers go through. You start
off struggling to get things to work
and have absolutely no structure
to your code. Code is sloppy and
copy/pasting is prevalent. Eventu-
ally you learn about the benefits of
structured programming and shar-
ing logic as much as possible. Then
you learn about making generic
abstractions and using encapsula-
tion to make it easier to reason
about systems. Then you become
obsessed with making all your code
generic, with making things exten-
sible to future-proof your programs.

Suffering-oriented programming
rejects that you can effectively
anticipate needs you don't currently
have. It recognizes that attempts
to make things generic without a
deep understanding of the problem
domain will lead to complexity
and waste. Designs must always be
driven by real, tangible use cases. M

Nathan Marzis an engineer at Twitter. Pre-
viously Nathan was the lead engineer of
BackType which was acquired by Twitter in
July of 2011. He is a believer in the power
of open source and has authored some
significant open source projects, includ-
ing Cascalog, ElephantDB, and Storm. He
writes a blog at nathanmarz.com

Reprinted with permission of the original author.
First appeared in hn.my/suffer (nathanmarz.com)

16 PROGRAMMING

http://nathanmarz.com
http://hn.my/suffer

Spatial Indexing with
uadtrees & Hilbert Curves

By NICK JOHNSON

AST THURSDAY NIGHT after Quadtrees
the sessions at Oredev Quadtrees are a very straightfor- Inserting data into a Quadtree is
was “Birds of a Feather” ward spatial indexing technique. In simple:
— a sort of mini-unconference. a Quadtree, each node represents a .
. . . . = Start at the root and determine
Anyone could write up a topic on bounding box covering some part of which auadrant vour point
the whiteboard; interested indi- the space being indexed, with the A yourp
. .) . occupies.
viduals added their names, and root node covering the entire area.
each group got allocated a room Each node is either a leaf node or ® Recurse to that node and repeat
to chat about the topic. I joined an internal node. A leaf node con- until you find a leaf node.
the “Spatial Indexing” group, and tains one or more indexed points . L
P cxing groub, . . P = Add your point to that node’s list
we spent a fascinating hour-and-a- and no children while an internal of points
half talking about spatial indexing node has exactly four children, p ’
methods, which reminded me of one for each quadrant obtained by =~ = If the list exceeds some pre-
several interesting algorithms and dividing the area covered in half determined maximum number
techniques. along both axes, hence the name. of elements, split the node and
Spatial indexing is increasingly g T move the points into the correct
important as more and more data S : e ST T e H subnodes.
and applications are geospatially- .]
enabled. Efficiently querying sz el o e i} x >
geospatial data, however, is a L i : Ny
considerable challenge. Because the ['

data is two-dimensional (or some-
times more), you can’t use standard
indexing techniques to query on

position. Spatial indexes solve this E s i | } I - F

through a variety of techniques. In o B i A representation of how a Quadtree is
this post, we'll cover several meth- H T B B m.) structured internally.

ods: quadtrees, geohashes (not to e Bl D (eH | 5 |

be confused with geohashing), and
space-filling curves and reveal how
they're all interrelated.

To query a Quadtree:
= Start at the root.

® Examine each child node and
check if it intersects the area
being queried for. If it does,
recurse into that child node.
Whenever you encounter a leaf
node, examine each entry to see
if it intersects with the query area
and return it if it does.

Note that a Quadtree is very
regular. It is, in fact, a trie since
the values of the tree nodes do not
depend on the data being inserted.
A consequence of this is that we
can uniquely number our nodes in a
straightforward manner:

® Number each quadrant in binary
(00 for the top left, 10 for the
top right, and so forth)

® The number for a node is the
concatenation of the quadrant
numbers for each of its ancestors,
starting at the root. Using this
system, the bottom right node
in the sample image would be
numbered 11 01.

If we define a maximum depth
for our tree, then we can easily
calculate a point’s node number
without reference to the tree:

® Normalize the node’s coordinates
to an appropriate integer range
(for example, 32 bits each).

® Interleave the bits from the x and
y coordinates. Each pair of bits
specifies a quadrant in the hypo-
thetical Quadtree.

18 PROGRAMMING

Geohashes

This system might seem famil-

iar: it’s a geohash! At this point,
you can actually throw out the
Quadtree itself. The node number,
or geohash, contains all the infor-
mation we need about its loca-
tion in the tree. Each leaf node

in a full-height tree is a complete
geohash, and each internal node is
represented by the range from its
smallest leaf node to its largest one.
Thus, you can efficiently locate all
the points under any internal node
by performing a query to index on
the geohash for everything within
the numeric range covered by the
desired node.

Querying once we've thrown
away the tree itself becomes a little
more complex. Instead of refining
our search set recursively, we need
to construct a search set ahead of
time by finding the smallest prefix
(or quadtree node) that completely
covers the query area. In the worst
case, this may be substantially larger
than the actual query area. For
example, a small shape in the center
of the indexed area that intersects
all four quadrants would require
selecting the root node for this step.

The aim, now, is to construct
a set of prefixes that completely
covers the query region while
including as little area outside the
region as possible. If we had no
other constraints, we could simply
select the set of leaf nodes that
intersect the query area, but that
would result in a lot of queries.
Another constraint, then, is that we
want to minimize the number of
distinct ranges we have to query for.
One approach to doing this is set-
ting a maximum number of ranges
we’re willing to have:

m Construct a set of ranges, initially
populated with the prefix we
identified earlier.

m Pick the node in the set that can
be subdivided without exceed-
ing the maximum range count
and that will remove the most
unwanted area from the query
region.

m Repeat this until there are no
ranges in the set that can be fur-

ther subdivided.

® Examine the resulting set, and
join any adjacent ranges, if
possible.

The diagram below demonstrates
how this works for a query on a
circular area with a limit of 5 query
ranges.

How a query for
a region is broken
into a series of
geohash prefixes/
ranges.

This approach works well, and it
allows us to avoid recursive look-
ups. The set of range lookups we do
execute can all be done in parallel.
Since each lookup can be expected
to require a disk seek, parallelizing
our queries allows us to substan-
tially cut down the time required to
return the results.

Still, we can do better. You may
notice that all the areas we need
to query in the above diagram are
adjacent, yet we can only merge
two of them (the 2 in the bottom
right of the selected area) into a
single range query, requiring us to
do 4 separate queries. This is due in
part to the order that our geohash-
ing approach “visits” subregions,
working left to right, then top to
bottom in each quad. The discon-
tinuity as we go from top right to
bottom left results in us having to
split up some ranges that we could
otherwise make contiguous. If we
were to visit regions in a different
order, perhaps we could minimize
or eliminate these discontinuities,
resulting in more areas that can
be treated as adjacent and fetched
with a single query. With an
improvement in efficiency like that,
we could do fewer queries for the
same area covered, or conversely,
the same number of queries, but
including less extraneous area.

V /]
4

e

.ﬁ?,
[

Illustrates the order in which the geo-
hashing approach “visits” each quad.

Hilbert Curves

Suppose instead, we visit regions in
a “U” shape. Within each quad, of
course, we also visit subquads in the
same “U” shape, but aligned so as to
match up with neighboring quads.
If we organize the orientation of
these “U”s correctly, we can com-
pletely eliminate any discontinuities
and visit the entire area at whatever
resolution we choose continuously
to fully explore each region before
moving on to the next. Not only
does this eliminate discontinuities,
but it also improves the overall
locality. The pattern we get if we do
this may look familiar because it's a
Hilbert Curve.

Hilbert Curves are part of a class
of one-dimensional fractals known
as space-filling curves, so named
because they are one-dimensional
lines that nevertheless fill all avail-
able space in a fixed area. They're
fairly well known, in part thanks to
XKCD's use of them for a map of
the internet [xkcd.com/195/]. As
you can see, they're also of use for
spatial indexing since they exhibit
exactly the locality and continuity
required. For instance, if we take
another look at the example we
used for finding the set of queries
required to encompass a circle
above, we find that we can reduce
the number of queries by one. The
small region in the lower left is now
contiguous with the region to its
right and while the two regions at
the bottom are no longer contigu-
ous with each other, the rightmost
one is now contiguous with the
large area in the upper right.

—+ |+
T
]

T

[lustrates the order in which a Hil-
bert Curve “visits” each quad.

One thing that our elegant new
system is lacking so far is a way
to convert between a pair of (x,y)
coordinates and the correspond-
ing position in the Hilbert Curve.
With geohashing it was easy and
obvious — just interleave the x
and y coordinates. However, there’s
no obvious way to modify that
for a Hilbert Curve. Searching the
internet, you're likely to come
across many descriptions of how
Hilbert Curves are drawn, but there
are few, if any, descriptions of how
to find the position of an arbitrary
point. To figure this out, we need
to take a closer look at how the
Hilbert Curve can be recursively
constructed.

The first thing to observe is that
although most references to Hilbert
Curves focus on how to draw the
curve, this is a distraction from the
essential property of the curve. Spe-
cifically, its importance to us: it's an
ordering for points on a plane. If we
express a Hilbert Curve in terms
of this ordering, drawing the curve
itself becomes trivial, as it is simply
a matter of connecting the dots.
Forget about how to connect adja-
cent sub-curves, and instead, focus
on how to recursively enumerate
the points.

Hilbert Curves are
all about ordering
a set of points on a

2d plane.

N

http://xkcd.com/195/

At the root level, enumerating the points is simple:
pick a direction and a start point, and proceed around
the four quadrants, numbering them O to 3. The dif-
ficulty is introduced when we want to determine
the order in which we visit the sub-quadrants while
maintaining the overall adjacency property. Examina-
tion reveals that each of the sub-quadrants’ curves are
a simple transformation of the original curve: there
are only four possible transformations. Naturally, this
applies recursively to sub-sub quadrants and so forth.
The curve we use for a given quadrant is determined
by the curve we used for the square it’s in and the
quadrant’s position. With a little work, we can con-
struct a table that encapsulates this:

‘wm "l E e E 8 "E s
' w75 | e ™| YE e

Suppose we want to use this table to determine the
position of a point on a third-level Hilbert Curve. For
the sake of this example, assume our point has coordi-
nates (5,2):

m Starting with the first square on the diagram, find the
quadrant our point is in. In this case, it’s the upper
right quadrant. The first part of our Hilbert Curve
position, then, is 3 (11 in binary).

® Consult the square shown in the inset of square 3. In
this case, it's the second square.

m Repeat the process. Which sub-quadrant does our
point fall into? Here, it’s the lower left one, meaning
the next part of your position is 1 and the square we
should should consult next is the second one again.

m Repeat the process one final time to find that our
point falls in the upper right sub-sub-quadrant. The
final coordinate is 3 (11 in binary). Stringing them
together, we now know the position of the point on
the curve is 110111 binary, or 55.

Let’s be a little more methodical and write meth-
ods to convert between (x,y) coordinates and Hilbert
Curve positions. First, we need to express our diagram
above in terms a computer can understand:

hilbert_map = {

‘a': {(0, @): (o, 'd"), (0, 1): (1, 'a'),
(1, @): (3, 'b"), (1, 1): (2, "a")},
'b': {(6, @): (2, 'b"), (@, 1): (1, 'b"),
(1, @): (3, 'a"), (1, 1): (0, 'c')},
‘e’ {(0, @): (2, 'c'), (@, 1): (3, 'd'),
(1, 0): (1, 'c'), (1, 1): (@, 'b")},
'd': {(e, @): (6, 'a'), (@, 1): (3, 'c'),
(1, @): (1, 'd"), (1, 1): (2, 'd")},

In the snippet above, each element of hilbert_map
corresponds to one of the four squares in the diagram
above. To make things easier to follow, I've identified
each one with a letter: “a” is the first square, “b” the
second, and so forth. The value for each square is a dict,
mapping x and y coordinates for the (sub-)quadrant to
the position along the line (the first part of the value
tuple) and the square to use next (the second part of
the value tuple). Here’s how we can use this to trans-

late x and y coordinates into a hilbert curve position:

def point_to_hilbert(x, y, order=16):
current_square = 'a'
position = @
for i in range(order - 1, -1, -1):
position <<= 2 quad_x =1
if x & (1 << i) else ©
quad_y =1
ify & (1 << i) else ©
quad_position,
current_square = hilbert_map[current_square]
[(quad_x, quad_y)]
position |= quad_position
return position

The input to this function is the integer x and y
coordinates and the order of the curve. An order 1
curve fills a 2x2 grid, an order 2 curve fills a 4x4 grid,
and so forth. Our x and y coordinates, then, should be
normalized to a range of 0 to 2order-1. The function
works by stepping over each bit of the x and y coor-
dinates, starting with the most significant. For each, it
determines which (sub-)quadrant the coordinate lies in
by testing the corresponding bit and then fetching the
position along the line and the next square to use from
the table we defined earlier. The curve position is set as
the least significant 2 bits on the position variable. At
the beginning of the next loop, it’s left-shifted to make
room for the next set of coordinates.

20 PROGRAMMING

Let’s check that we've written the function correctly by running
our example from above through it:

>>> point_to_hilbert(5,2,3)
55

Presto! For a further test, we can use the function to generate a
complete list of ordered points for a Hilbert Curve and then use a
spreadsheet to graph them and see if we get a Hilbert Curve. Enter
the following expression into an interactive Python interpreter:

>>> points = [(x, y) for x in range(8) for y in range(8)]
>>> sorted_points = sorted(points,

key=lambda k: point_to_hilbert(k[0], k[1], 3))
>>> print '\n'.join('%s,%s' % x for x in sorted_points)

Take the resulting text, paste it into a file called hilbert.csv, open
it in your favorite spreadsheet, and instruct it to generate a scatter
plot. The result is, of course, a nicely plotted Hilbert Curve!

The inverse of point_to_hilbert is a straightforward reversal
of the hilbert_map; implementing it is left as an exercise for the
reader.

Conclusion

There you have it — spatial indexing from quadtrees to geohashes
to hilbert curves. One final observation: If you express the ordered
sequence of (x,y) coordinates required to draw a Hilbert Curve in
binary, do you notice anything interesting about the ordering? Does
it remind you of anything?

Just to wrap up, a caveat: All of the indexing methods I've
described today are only well-suited to indexing points. If you
want to index lines, polylines, or polygons, you're probably out of
luck with these methods. And so far as I'm aware, the only known
algorithm for effectively indexing shapes is the R-tree, an entirely
different and more complex beast. M

Nick Johnson is a Developer Programs Engineer for Google App Engine, who's
just seen the light and relocated to Australia. He regularly blogs about interest-
ing computer science topics at his blog [blog.notdot.net], and when he’s not
saving the world there he can be found on Twitter (@nicksdjohnson) or Stack
Overflow helping folks out.

Reprinted with permission of the original author. First appeared in hn.my/spatial (notdot.net)

http://blog.notdot.net
http://twitter.com/nicksdjohnson
http://hn.my/spatial

Comparing JavaScript,
CoffeeScript & ClojureScript

By DAVID NOLEN

"VE BEEN SPENDING a lot of time recently

hacking on the ClojureScript language

[github.com/clojure/clojurescript]. I can say with-
out qualification that I haven’t had this much fun pro-
gramming since [first taught myself JavaScript nearly
seven years ago. So let’s put aside logic programming
for a moment and let’s talk about code complexity and
code expressivity.

Recently on StackOverflow someone asked how to
idiomatically construct a type in ClojureScript. Before
we get into that, let’s consider how this is done in
JavaScript:

// 193 characters

var Foo = function(a, b, c){
this.a = a;
this.b b;
this.c c;

Foo.prototype.bar = function(x){
return this.a + this.b + this.c + x;

var afoo = new Foo(1,2,3);
afoo.bar(3);

CoffeeScript gets a lot of deserved attention for its
brevity for common tasks. For example the same thing
in CoffeeScript:

106 characters

class Foo
constructor: (@a, @b, @c) ->
bar: (x) -> @a + @b + @c + x

afoo = new Foo 1, 2, 3
afoo.bar 3

That requires nearly half the amount of characters.
Of course on real code the code compression isn’t
nearly that great — perhaps 10-20% in my experience.
Still, I find that CoffeeScript tends to give the feel-
ing of compression for many common tasks, and how
a language feels day in and day out is important for
programmer happiness.

Let’s take a look at the same thing in ClojureScript:

;3 130 characters

(defprotocol IFoo
(bar [this x])) ;; 93 characters w/o this!
(deftype Foo [a b c]
IFoo
(bar [_ x] (+ a b c x)))

(def afoo (Foo. 1 2 3))
(bar afoo 3)

22 PROGRAMMING

http://github.com/clojure/clojurescript

The ClojureScript without the strange
protocol form would give even better com-
pression than CoffeeScript! So what does this
protocol form do, and why do we need that
cluttering up our type definition?

ClojureScript, unlike JavaScript or Cof-
feeScript, promotes defining reusable abstrac-
tions. Imagine if all the types in your favor-
ite library were swappable with your own
implementations? Hmm...perhaps that’s an
abstraction too far for many users of JavaS-
cript or CoffeeScript.

Well, here’s a use case I think more people
will get: neither JavaScript nor CoffeeScript
provides any kind of doesNotUnderstand:
hook that is fantastic for providing default
implementations.

(defprotocol IFoo
(bar [this x]))

(extend-type default
IFoo
(bar [_ x] :default))

(bar 1) ; >> :default

We've extended all objects including
numbers to respond to the bar function. We
can provide more specific implementations at
anytime, i.e. by using extend-type on string,
array, Vector, even your custom types
instead of default. It's important to note that
this extension is safe and local to whatever
namespace you defined your protocol.

Still not convinced? Let’s demonstrate a
very powerful form of extension that even
Dart is getting behind.

In ClojureScript it’s simple to construct
types which act like functions. While this
might sound esoteric, consider very succinct
operations like the following:

(def address {:street "1010 Foo Ave."
:apt "11111111"
:city "Bit City"
:zip "00000000"})

(map address [:street :zip])
55 >> ("1010 Foo Ave." "00000000")

Wow. HashMaps in ClojureScript are functions! Now this may
look like some special case provided by the language, but that'’s
not true. ClojureScript eats its own dog food; the language is
defined on top of reusable abstractions.

How can we leverage this? An example: JavaScript and Cof-
feeScript both let you extract a range from strings and arrays. In
JavaScript you have slice and CoffeeScript provides sugar via
the [i..j] syntax. Neither provides you with a way to succinctly
construct and manipulate the idea of a slice. For example:

(defprotocol ISlice
(-shift [this]))

(deftype Slice [start end]
ISlice
(-shift [_] (Slice. (inc start) (inc end)))
IFn
(-invoke [_ x]
(cond
(string? x) (.substring x start end)
(vector? x) (subvec x start end))))

(def s (Slice. @ 5))
(def v ["List Processing"” [0 1 2 3 4 5 6]])

(map s v)

55 >> ("List " [0 12 3 4])
(map (-shift s) v)

55 >> ("ist P" [1 2 3 4 5])

IFn is one of the many reusable abstractions that ships with
language. We define ISlice to illustrate that our type has dual
functionality as an object with fields that can be manipulated
and as a function which can be applied to data!

Many people have the misconceived notion that Clojure/
Script is only about functional programming. On the contrary
Clojure/Script is very much “Object Oriented Programming: The
Good Parts.” W

David Nolen is a JavaScript developer for The New York Times. In his free
time he works on a variety of open source Clojure projects including core.
match, core.logic, and ClojureScript.

Reprinted with permission of the original author.
First appeared in hn.my/jscs (dosync.posterous.com)

http://hn.my/jscs

Haskell Web Programming:
A Yesod Tutorial

HE YESOD DOCUMENTATION

and particularly the book

are excellent. But I missed
an intermediate tutorial. This tuto-
rial won’t explain all details, but
I will try to give a step by step of
how to start from a five minute
tutorial to an almost production-
ready architecture. Furthermore,
explaining something to others is a
great way to learn. If you are used
to Haskell [haskell.org] and Yesod
[yesodweb.com], this tutorial won't
teach you much. If you are com-
pletely new to Haskell and Yesod, it
hopefully helps you.

During this tutorial you'll install,
initialize, and configure your first
Yesod project. Then there is a very
minimal five-minute Yesod tutorial
to heat up and verify the awesome-
ness of Yesod. Then we will clean
up the five-minute tutorial to use
some “best practices.” Finally, there
will be a more standard real-world
example: a minimal blog system.

By YANN ESPOSITO

Before the Real Start

Install

The recommended way to install

Haskell is to download the Haskell

Platform [haskell.org/platform].
Once done, you need to install

Yesod. Open a terminal session and

do:

~ cabal update
~ cabal install Yesod cabal-dev

Initialize
You are now ready to initialize your
first Yesod project. Open a terminal
and type:

~ yesod init

Enter your name, choose yosog for
the project name and enter Yosog
for the name of the Foundation.
Finally choose sqlite. Now, start the
development cycle:

~ cd yosog
~ cabal-dev install && yesod
--dev devel

This will compile the entire
project. Be patient: it could take a
while the first time. Once finished,
a server is launched, and you can
visit it at hitp://localhost:3000

Some Last Minute Words

Up until here, we have a directory
containing a bunch of files and a
local web server listening the port
3000. If we modify a file inside
this directory, Yesod should try to
recompile the site as fast as pos-
sible. Instead of explaining the role
of every file, let’s focus only on the
important files/directories for this
tutorial:

® config/routes — is where you'll
configure the map URL to code.

® Handler/ — contains the files
that will contain the code called
when a URL is accessed.

= templates/ — contains HTML,
JavaScript and CSS templates.

® config/models — is where you'll
configure the persistent objects

(database tables).

Now we are ready to start!

24 PROGRAMMING

http://haskell.org
http://yesodweb.com
http://haskell.org/platform

Echo
To verify the quality of the security of the Yesod frame-
work, let's make a minimal echo application.

Goal: Make a server that when accessed /echo/
[some text] should return a web page containing
“some text” inside an h1 bloc.

First, we must declare the URL of the form /
echo/. .. meaningful. Let’s take a look at the file
config/routes:

/static StaticR Static getStatic
/auth AuthR Auth getAuth

/favicon.ico FaviconR GET
/robots.txt RobotsR GET

/ RootR GET

We want to add a route of the form /echo/[any-
thing] somehow and do some action with this. Add
the following:

/echo/#String EchoR GET

This line contains three elements: the URL pattern,
a handler name, an HTTPmethod. I am not particularly
a fan of the big R notation, but this is the standard
convention.

If you save config/routes, you should see your ter-
minal in which you launched yesod devel activate and
certainly displaying an error message.

Application.hs:31:1: Not in scope: “getEchoR'

Why? Simply because we didn’t write the code for
the handler Echor. Edit the file Handler/Root.hs and
append this:

getEchoR :: String -> Handler RepHtml
getEchoR theText = do
defaultLayout $ do
[whamlet|<h1>#{theText}|]

Don’t worry if you find all of this a bit cryptic. In
short, it just declares a function named getEchoR with
one argument (theText) of type String. When this
function is called, it returns a Handler RepHtml what-
ever it is. But mainly this will encapsulate our expected
result inside an HTML text.

After saving the file, you should see Yesod recompile
the application. When the compilation is finished you'll
see the message: “Starting devel application.”

Now you can visit: hitp://localhost:3000/echo/
Yesod %20rocks!
TADA! It works!

Bulletproof?

Even this extremely minimal web application has some
impressive properties. For example, imagine an attacker
entering this URL:

http://localhost:3000/echo/<a>I'm <script>alert("Bad!");

The special characters are protected for us. A mali-
cious user could not hide some bad script inside.

This behavior is a direct consequence of type safety.
The URL string is put inside a URL type. Then the
interesting part in the URL is put inside a String type.
To pass from URL type to String type, some transfor-
mation are made. For example, replace all “%20” with
space characters. Then to show the String inside an
HTML document, the String is put inside an HTML
type. Some transformation occurs like replace “<” by
“<”. Thanks to Yesod, this tedious job is done for us.

Yesod is not only fast, it helps us to remain secure. It
protects us from many common errors in other para-
digms. Yes, I am looking at you, PHP!

Cleaning Up
Even this very minimal example should be enhanced.
We will clean up many details:

m Use a general CSS (cleaner than the empty by
default)

® Dispatch handler code into different files
m Use Data.Text instead of String
® Put our “views” inside the template directory

Use a Better CSS

It is nice to note, the default template is based on
HTMLS boilerplate. Let’s change the default CSS.
Add a file named default-layout.lucius inside the
templates/ directory containing:

body {
font-family: Helvetica, sans-serif;
font-size: 18px; }
#main {
padding: lem;
border: #CCC solid 2px;
border-radius: 5px;
margin: lem;
width: 37em;

margin: lem auto;
background: #F2F2F2;
line-height: 1.5em;
color: #333; }
.required { margin: lem 0; }
.optional { margin: lem 0; }
label { width: 8em; display: inline-block; }
input, textarea { background: #FAFAFA}
textarea { width: 27em; height: 9em;}
ul { list-style: square; }
a { color: #A56; }
a:hover { color: #C58; }
a:active { color: #C58; }
a:visited { color: #943; }

Personally I would prefer if such a minimal CSS
was put with the scaffolding tool. I am sure somebody
already made such a minimal CSS which gives the
impression the browser handles HTML correctly with-
out any style applied to it. But I digress.

Separate Handlers
Generally you don’t want to have all your code inside

a unique file. This is why we will separate our handlers.

First create a new file Handler/Echo.hs containing:

module Handler.Echo where
import Import

getEchoR :: String -> Handler RepHtml
getEchoR theText = do
defaultLayout $ do
[whamlet |<h1>#{theText}|]

Do not forget to remove the getEchoR function inside
Handler/Root.hs.

We must declare this new file into yosog.cabal. Just
after Handler.Root, add:

Handler.Echo

We must also declare this new Handler module

inside Application.hs. Just after the “import Handler.

Root”, add:

import Handler.Echo

Data.Text

It is good practice to use Data.Text instead of String.
To declare it, add this import directive to
Foundation.hs (just after the last one):

import Data.Text

We have to modify config/routes and our handler
accordingly. Replace #String by #Text in config/
routes:

/echo/#Text EchoR GET
And do the same in Handler/Echo.hs:

module Handler.Echo where
import Import

getEchoR :: Text -> Handler RepHtml
getEchoR theText = do
defaultLayout $ do
[whamlet|<h1>#{theText}|]

Use Templates

Some HTML (more precisely hamlet) is written
directly inside our handler. We should put this part
inside another file. Create the new file templates/
echo.hamlet containing:

<h1> #{theText}
and modify the handler Handler/Echo.hs:

getEchoR :: Text -> Handler RepHtml
getEchoR theText = do
defaultLayout $ do
$(widgetFile "echo")

At this point, our web application is structured
between different files. Handlers are grouped, we use
Data.Text, and our views are in templates. It is the
time to try a slightly more complex example.

26 PROGRAMMING

Mirror
Let’s make another minimal application. You should
see a form containing a text field and a validation
button. When you enter some text (for example
“Jormungad”) and validate, the next page presents the
content and its reverse appended to it. In our example
it should return “JormungaddagnumroJ”.

First, add a new route:

/mirror MirrorR GET POST

This time the path /mirror will accept GET and

POST requests. Add the corresponding new Handler
file:

® Mirror.hs

module Handler.Mirror where

import Import
import qualified Data.Text as T

getMirrorR :: Handler RepHtml
getMirrorR = do
defaultLayout $ do
$(widgetFile "mirror"

postMirrorR :: Handler RepHtml
postMirrorR = do
postedText <- runInputPost $ ireq text-
Field "content”
defaultLayout $ do
$(widgetFile "posted")

Don’t forget to declare it inside yosog. cabal and
Application.hs.

We will need to use the reverse function provided
by Data.Text which explains the additional import.

Create the two corresponding templates:
® mirror.hamlet

<h1> Enter your text

<form method=post action=@{MirrorR}>
<input type=text name=content>
<input type=submit>

® posted.hamlet

<hl>You've just posted
<p>#t{postedText}#{T.reverse postedText}
<hr>

<p>Get back

And that is all. This time, we won’t need to clean up.
We could have used another way to generate the form,
but we'll see this in the next section.

Try it here: hitp://localhost:3000/mirror

Also you can try to enter strange values. As before,
your application is quite secure.

A Blog
We saw how to retrieve HTTP parameters. It is the
time to save things into a database.

As before, add some routes inside config/routes:

/blog
/blog/#ArticleId

BlogR GET POST
ArticleR GET

This example will be very minimal:
® GET on /blog should display the list of articles.
® POST on /blog should create a new article.

® GET on /blog/<article id> should display the con-
tent of the article.

First, we declare another model object. Append the
following content to config/models:

Article
title Text
content Html
deriving

As Html is not an instance of Read, Show and Eq, we
had to add the deriving line. If you forget it, there will
be an error.

After the route and the model, we write the
handler. First, declare a new Handler module. Add
import Handler.Blog inside Application.hs and
add it into yosog.cabal. Let’s write the content of
Handler/Blog.hs. We start by declaring the module
and by importing some block necessary to handle
HTML in forms.

module Handler.Blog
(getBlogR, postBlogR, getArticleR)
where

import Import

-- to use Html into forms
import Yesod.Form.Nic (YesodNic, nicHtmlField)
instance YesodNic Yosog

Remark: it is a best practice to add the YesodNic
instance inside Foundation.hs. I put this defini-

tion here to make things easier, but be warned
about this orphan instance. To put the include inside
Foundation.hs is left as an exercise to the reader.

entryForm :: Form Article
entryForm = renderDivs $ Article
<$> areq textField "Title" Nothing

<*> areq nicHtmlField "Content" Nothing

This function defines a form for adding a new article.
Don’t pay attention to all the syntax. If you are curious
you can take a look at Applicative Functor. You just
have to remember areq is for required form input. Its
arguments being: areq type label default_value.

-- The view showing the list of articles
getBlogR :: Handler RepHtml
getBlogR = do

-- Get the 1list of articles inside the

-- database.

articles <- runDB $ selectList [] [Desc
ArticleTitle]

-- We'll need the two "objects":

-- articlelWidget and enctype

-- to construct the form

-- (see templates/articles.hamlet).

((_,articleWidget), enctype) <- generate-
FormPost entryForm

defaultLayout $ do

$(widgetFile "articles")

This handler should display a list of articles. We get
the list from the DB and we construct the form. Just
take a look at the corresponding template:

B articles.hamlet

<h1> Articles
$if null articles
-- Show a standard message if there is no
-- article
<p> There are no articles in the blog
$else
-- Show the list of articles

$forall Entity articleId article <- articles
<1li>

#{articleTitle article}
<hr>
<form method=post enctype=#{enctype}>
~{articleWidget}
<div>
<input type=submit value="Post New Article">

You should notice we added some logic inside the
template. There is a test and a “loop.”

Another very interesting part is the creation of the
form. The articleWidget was created by Yesod. We
have given him the right parameters (input required
or optional, labels, default values). And now we have a
protected form made for us. But we have to create the
submit button.

Get back to Handler/Blog.hs.

-- we continue Handler/Blog.hs
postBlogR :: Handler RepHtml
postBlogR = do
((res,articleWidget),enctype)
<- runFormPost entryForm
case res of
FormSuccess article -> do
articleId <- runDB $ insert article
setMessage $ toHtml $
(articleTitle article) <>
redirect $ ArticleR articleld
-> defaultLayout $ do
setTitle "Please correct your entry form"
$(widgetFile "articleAddError")

created"

28 PROGRAMMING

This function should be used to create a new article.
We handle the form response. If there is an error, we
display an error page; for example, if we left some
required value blank. If things goes right:

® We add the new article inside the DB (runDB $
insert article).

® We add a message to be displayed (setMessage $
® We are redirected to the article web page.

Here is the content of the error page:

<form method=post enctype=#{enctype}>
~articleWidget}
<div>
<input type=submit value="Post New Article">

Finally, we need to display an article:

getArticleR :: ArticleId -> Handler RepHtml
getArticleR articleId = do
article <- runDB $ get404 articleld
defaultLayout $ do
setTitle $ toHtml $ articleTitle article
$(widgetFile "article")

The get4e4 function tries to do a get on the DB. If
it fails, it returns a 404 page. The rest should be clear.
Here is the content of templates/article.hamlet:

<hl> #{articleTitle article}
<article> #{articleContent article}

The blog system is finished. Just for fun, you can try
to create an article with the following content:

<p>A last try to cross script
and SQL injection</p>
<p>Here is the first try:
<script>alert("You loose");</script></p>
<p> And Here is the last </p>
"); DROP TABLE ARTICLE;;

Conclusion
This is the end of this tutorial.

If you already know Haskell and you want to go
further, you should take a look at the recent i18n blog
tutorial [hn.my/i18n]. It will be obvious it inspired
my own tutorial. You'll learn in a very straightforward
way how easy it is to use authorizations, Time, and
internationalization.

If on the other hand, you don’t know Haskell, then
you shouldn’t jump directly to web programming.
Haskell is a very complex and unusual language. My
advice for quickly using Haskell for web programming
is:

1. Start by trying Haskell in your browser. [tryhaskell.org]

2. Then read the excellent “Learn you a Haskell for
Great Good.” [learnyouahaskell.com]

3.If you have difficulties in understanding concepts like
monads, you should really read these articles. For me,
they were enlightening. [hn.my/monads]

4.1f you feel confident, you should be able to follow
the Yesod book. If you find it difficult to follow the
Yesod book, you should read Haskell first (it is a
must-read). [book.realworldhaskell.org]

Also, note that:
u haskell.org is full of excellent resources.
® hoogle [haskell.org/hoogle] will be very useful.

® Use hlint [hn.my/hlint] as soon as possible to get
good habits.

As you can see, if you don’t already know Haskell, the
path is long but I guarantee it will be very rewarding! M

PS: You can download the source of this Yesod blog
tutorial at github.com/yogsototh/yosog

Yann Esposito is the author of YPassword. He co-founded Grid-
Pocket and is an active web and iOS developer. He has a post
Ph.D. in Machine Learning. He has written two research tools:
dees & SEDIL.

Reprinted with permission of the original author.
First appeared in hn.my/yesod (yannesposito.com)

http://hn.my/i18n
http://tryhaskell.org
http://learnyouahaskell.com
http://hn.my/monads
http://book.realworldhaskell.org
http://haskell.org
http://haskell.org/hoogle
http://hn.my/hlint
http://github.com/yogsototh/yosog
http://hn.my/yesod

Designing Great APl Docs

RITING DOCUMENTA-

TION 1S one of those

things that many
developers dread. It takes a lot of
effort and time to get right. And
too often, people take shortcuts.
This is sad, because well designed
documentation is the key to getting
people excited about your proj-
ect, whether it’s open source or a
developer-focused product.

In fact, I argue that the most
important piece of UX for a devel-
oper product isn’t the homepage
or the sign up process or the SDK
download. It's the API documenta-
tion! Who cares if your product
is the most powerful thing in the
world if no one understands how to
use it?

If you're a making a developer-
focused product, the documenta-
tion is as core to the user experi-
ence as the endpoints themselves.

I've seen far too many projects
that simply dump you to a GitHub
page with a two-liner readme.

The most successful API docs are
carefully crafted with love. Here at
Parse, we devote ourselves to this
art.

So, what elements go into making

great API documentation?

By JAMES YU

Documentation is a Layered
Beast

Your documentation shouldn’t just
be a plain listing of endpoints with
their parameters. Documentation is
a whole ecosystem of content that
aims to teach users how to interact
with your API. At the very least,
you should have these components:

m Reference: This is the listing of
all the functionality in excruciat-
ing detail. This includes all data
type and function specs. Your
advanced developers will leave
this open in a tab all day long.

Guides: This is somewhere
between the reference and tutori-
als. It should be like your refer-
ence with prose that explains
how to use your API.

m Tutorials: These teach your users
specific things that they can do
with your API, and are usually
tightly focused on just a few
pieces of functionality. Bonus
points if you include working
sample code.

At Parse, we have all three of
these components, and we're cur-
rently working on fleshing out more
tutorials.

Another good example is Stripe’s
API, which has an awesome hybrid
guide [stripe.com/docs/api] and
reference and also a cadre of great
tutorials. GitHub’s reference API
[developer.github.com] is also very
well designed.

Remove Abstractions with
Examples
You could argue that your API is
one big abstraction, and that’s kind
of the point. However, when teach-
ing developers, try to remove as
many abstractions as possible.
Liberally sprinkle real world
examples throughout your docu-
mentation. No developer will ever
complain that there are too many
examples. They dramatically reduce
the time for developers to under-
stand your product. In fact, we even
have example code right on our
homepage [parse.com].

Minimize Clicking
It’s no secret that developers hate
to click. Don’t spread your docu-
mentation onto a million different
pages. Keep related topics close to
each other on the same page.
We're big fans of long single
page guides that let users see the

30 PROGRAMMING

http://stripe.com/docs/api
http://developer.github.com
http://parse.com

The way to a developer’s heart is
great documentation.

big picture with the ability to
easily zoom into the details with a
persistent navigation bar. This has
the great side effect that users can
search all the content with an in-
page browser search.

A great example of this is
the Backbone.js documentation
[hn.my/bbdoc], which has every-
thing at your fingertips.

Include a Gentle Quickstart

The hardest part of adopting a new
API is right at the beginning, where
the learning curve is steep and the
developer is exposed to compli-
cated new ideas. The solution to
this is to introduce the API with a
quickstart guide.

The goal of the quickstart is to
walk the user through the minimal
steps needed to do the smallest
thing possible in your API. Nothing
more. Once a user has done this,
they’re ready to move on to the
more advanced concepts.

For example, our quickstart guide
has the user download our SDKs
and then save one object to our
platform. We even have a button
that lets users test whether they’ve
done this correctly. This gives them
the confidence to move on and
learn the rest of our platform.

Use Multiple Languages

We live in a polyglot world. If
appropriate, try to list examples

for multiple languages that your
API supports, most likely via client
libraries. Learning a new API is hard
enough without having to parse
unfamiliar languages.

MailGun’s API [hn.my/mailgun]
does a great job of this by letting
developers choose between curl,
Ruby, Python, Java, C#, and PHP
for the examples in a global menu.

You Can Never Over-communi-
cate Edge Cases
The worst thing is to be develop-
ing with an API only to discover an
error state that isn’t documented. In
situations like this, it can be unclear
if the error is in your code, or in
your understanding of the API.
Your reference should include
every edge case and every assump-
tion that is made, either implicitly
or explicitly. Spending a few min-
utes doing this can save hours of
your user’s collective time.

Sample Applications

At the end of the day, developers
want to see the big picture. And the
best way to show that is with work-
ing sample applications. I find that
application code is the best way to

communicate how everything in
your API ties together and how it
integrates with other systems.

A great example of this is sample
code in Apple’s iOS Developer
Library [hn.my/ioslib], which has
an exhaustive selection of sample
iOS apps organized by topic.

Add Personality
Reading API documentation isn’t
exactly a thrilling roller coaster ride.
But, you can at least add some per-
sonality and fun into your writing.
Surprise your reader with funny
examples and variable names other
than foo.

This will at least prevent them
from falling asleep.

Conclusion

The way to a developer’s heart is
great documentation, and great
documentation requires a lot of
investment. But this investment is
well worth it and is just as impor-

tant for a developer product as the
API itself. m

James Yu is co-founder of Parse, the mobile
application platform. He is a hacker,
designer, and marketer passionate about
building products that people love to use.

Reprinted with permission of the original author.
First appeared in hn.my/apidocs (parse.com)

http://hn.my/bbdoc
http://hn.my/mailgun
http://hn.my/ioslib
http://hn.my/apidocs

SPECIAL

ERFORMING MANUAL, REPETI-
TIVE tasks enrages me. I used
to think this was a corol-
lary of being a programmer, but
I've come to suspect (or hope) that
this behavior is inherent in being
human.

But being able to hack together
scripts simply makes it much easier
to go from a state of rage to a basic
solution in a very small amount of
time. As a side point, this is one of
the reasons that teaching the basics
of programming in schools is so
important. It's hard to think of any
job which wouldn’t benefit from a
few simple scripts to perform more
automation.

32 SPECIAL

When we're hiring, even for non-
developer roles, we look for this
kind of mentality — it's extremely
useful, especially when build-
ing a software businesses, if costs
don’t scale linearly with revenue.
The more we can invest up-front
in automation, the less time our
team has to spend on performing
stupid, manual tasks. As we add
more employees, the benefits are
compounded. And less rage gener-
ally makes the workplace a much
happier place.

I encountered a practical example
earlier this week. It was time to
submit expense reports, and I could
feel the rage starting to build up.
For some reason, our accountant
decreed that we had to fill in a
spreadsheet, line-by-line, for every
expense item.

Presumably, hundreds of mil-
lions of people have to do this
every month, costing millions hours
of lost productivity. And in most
companies, it’s because a well-
meaning HR or Finance person has
said that It Must Be Done. But if
that Finance person had a modi-
cum of programming experience,
they might be minded to try to find
a better way. That's what [mean
by hiring people with this kind of
mentality. We don’t want anyone
who'll lump some stupid task on
the rest of the team because they've
not got the mindset to think about
automation in a sensible way. Even
if they can’t program the solution
themselves, they need to be able
to figure out pretty quickly that a
better solution must exist.

Automate
Everything

By TOM BLOMFIELD

lllustration by John Schwegel (johnschwegel.com)

http://johnschwegel.com

After briefly raging out, I decided to do something about this
particular problem.

o Quickly define the requirements

® Record details of every expense item including date, amount,
and description.

m Be able to query the list to produce reports (by month and/or
person submitting the receipt).

m Keep copies of receipts for HMRC.

Think about how receipts fit into our workflow at the
moment, and the major problems

® Receipts can be physical (ex., till receipt for lunch) or elec-
tronic (ex., Rackspace email).

® They can pop up at random points in they day — not conve-
niently all at the same time every month.

® People have to store small pieces of paper for up to 30 days.
Unreliable.

m People then have to spend an hour or two each month going
through thousands of emails and hundreds of small pieces of
paper to find the receipts, remember what they're for, and
write them down one-by-one. At least the spreadsheet auto-
sums the amounts to a total... Inefficient!

Apply a modicum of brainpower to automate the
pain-points
To avoid the unreliability of storing small pieces of paper and the
inefficiency of examining thousands of emails, perhaps we could
store them all in one place, electronically. This place could be
an email account called something imaginative like “expenses@
mycompany.com”.

To avoid having to go through each receipt one-by-one, per-
haps some kind of machine could parse relevant information out
of each email and persist it somehow. Perhaps a database might
be useful. To produce the report, perhaps the database could
output certain information based on some kind of structured
query language. So that the people at HRMC don’t suffer an
instantaneous and fatal brain-explosion when we send them the
data, perhaps we could separate values with a comma, save them
all in a file, and advise HRMC to open the file with their pre-
ferred Microsoft spreadsheet program.

As a side note: in the interest of not re-
inventing the wheel, it's generally a good
idea to check if someone has solved problem
before. I decided to roll my own in this case
because I was interested in learning about
email handling after watching this great rails-
cast from Ryan Bates [hn.my/mailman]. And
because paying $9 per month per user for
something I could probably write myself in a
couple of hours seemed silly.

Technical Details

If you're interested in the technical details,

[used a ruby gem called Mailman, hosted

on Heroku'’s new cedar stack, to poll our
POP3 mail server every minute. Attachments
(pdfs, photos, etc) are saved to AWS S3, and
simple details of each receipt are stored in

a postgres database. A Campfire gem called
Tinder immediately alerts our company

chat room that someone’s spent some of

our hard-earned cash (just for amusement,
really), and a very simple Rails app hosted on
Heroku makes the data available in HTML or
CSV, which can be queried by date-range or
employee.

Emails are required to have a line similar
to “Amount 12.50”. Running OCR on photos
of receipts and detecting the right line to
take the Bill total from seemed like too much
effort. We might switch to mechanical turk if
people find this step troublesome.

Conclusion
Don’t put up with repetitive, manual tasks —
automate them! It’s the hacker way. W

Tom is a Ruby developer in London. He’s currently
working at GoCardless.com, an online payments com-
pany which he founded in 2010.

Reprinted with permission of the original author.
First appeared in hn.my/automate (tomblomfield.com)

http://hn.my/mailman
http://GoCardless.com
http://hn.my/automate

Criticism and
Two Way Streets

ILL BUXTON 1$ a Principal

Researcher with Micro-

soft where his main role
focuses on designing an environ-
ment that permits great design to
happen. As many have learned to
their peril, it's not simply a case of
just dumping talent in a room full
of IKEA furniture. In large compa-
nies you have to design the process
that creates design. One key idea
Bill advocates is an emphasis on
exploring the solution space before
iterating on a solution.

However, having great designers
each producing great solutions to a
shared problem can cause conflict if
not managed correctly.

Exploring the Solution Space
Like Apple, Microsoft encourages
their designers to create many dif-
ferent solutions to any given design
problem. But picking an outright
winner isn’t easy. It can cause argu-
ments and standstills. The quality of
resolution here defines the quality
of the design process. Who gets to
decide? Is it the loudest shouter?
The most senior? The highest
paid? None of these are correct by

default.

By DES TRAYNOR

When Does Your Solution Suck?
Every solution is great in some

circumstances and terrible in others.

Design debates are best settled by
inviting everyone to present their
solution but also explaining under
what circumstances their solution
is terrible. Finally, they're asked to
explain under what circumstances
their colleague’s solution would

be better. This is what Bill Buxton
refers to as walking on both sides of
the street.

The person who demonstrates
most knowledge about the short-
comings of their own solution and
the benefits of all the alternatives is
best-equipped to make the call.

Less Time Arguing, More Time
Designing

One surprising knock-on effect

of this approach is a reduction in
pointless design arguments. Those
arguments are rarely constructive
when people get offended and cling
on to their own precious concepts.
When everyone must be able to
praise their colleague’s work and
criticize their own, inevitably a
solution is agreed upon before a
showdown is necessary. Also, by
making a rule of praising alternate
solutions and criticizing your own,

the discussions move clear of the
realm of personal preference and
bias. It's simply a discussion of what
is right and when.

Design decisions should always
be based on what'’s appropriate for
the task at hand. If you find your
design is being beaten down, the
best way to fight back is to coun-
ter with “Well, when would my
design be appropriate?” Conversely,
before you take pleasure in destroy-
ing someone else’s hard work, first
make sure that you can answer the
question: “When will this solution
be great?”

The quality of critique decides
the quality of design output. Giving
it five minutes before you criticize
certainly helps, as does learning
to understand what it’s trying to
achieve, where it would be right,
and where it would be wrong.

Lastly, always remember the
golden rule of critique: don’t be a

dick. m

Des Traynor is the COO and UX Lead at
Intercom [intercom.io]. He writes regu-
larly about design, start-ups and cus-
tomer acquisition on The Intercom Blog
[blog.intercom.io]. Des is on Twitter as
@destraynor, and can be reached at
des@intercom.io

Reprinted with permission of the original author. First appeared in hn.my/criticism (intercom.io)

34 SPECIAL

http://intercom.io
http://blog.intercom.io
http://twitter.com/destraynor
des@intercom.io
http://hn.my/criticism

These are your servers

ONONO
These are your servers on Cloudkick

0 o

webserver_42

..{. ® .

Any questions?

cloudkick.com
415.779.5495

support for 8 clouds + dedicated hardware

cloudkscte

the best way to manage the cloud

http://cloudkick.com

Uncloaking a Slumlord
Conspiracy with Social
Network Analysis

By VALDIS KREBS

Sunlight is the best disinfectant.

— U.S. Supreme Court Justice Louis Brandeis

CLIENT OF OURS
— a small,
not-for-profit,
economic justice
organization (EJO) — used social
network analysis (SNA) to assist
their city attorney in convicting
a group of “slumlords” of various
housing violations that the real
estate investors had been side-
stepping for years. The housing
violations, in multiple buildings,

included:

1. Raw sewage leaks

2. Multiple tenant children with
high lead levels

3. Eviction of complaining tenants
4. Utility liens of six figures
The EJO had been working with

local tenants in run-down proper-
ties and soon started to notice some

36 SPECIAL

patterns. The EJO began to collect
public data on the properties with
the most violations. As the collected
data grew in size, the EJO exam-
ined various ways they could visual-
ize the data making it clear and
understandable to all concerned.
They tried various mind-mapping
and organization-charting software
but to no avail — the complex ties
they were discovering just made
the diagrams hopelessly unread-
able. They turned to social network
analysis to make sense of the com-
plex interconnectivity.

The data I will present below
is not the actual data from the
criminal case. However, it does
accurately reflect the social net-
work analysis they performed. The
names and genders of the indi-

viduals, as well as the names of real
estate holdings (LLC) and other

businesses have all been masked.
This case will be presented in the
sequence the EJO followed: first
they looked at the real estate hold-
ings, then the owners of the hold-
ings, and then their connections,
which led to other connections, and
more people and entities.

The EJO worked with the ten-
ants and city inspectors to assess the
buildings and document the viola-
tions. But every time documented
problems were delivered to the cur-
rent LLC owners by city officials,
nothing would happen. When the
city’s deadline approached to fix
the violations, the old LLC owner
would explain that the property
had changed hands and they were
no longer involved. The buildings
continued to deteriorate as owner
after owner avoided addressing the
violations.

Figure 1 shows how a building came under
new ownership. The gray links show the “sold & @ @l @ . @
to” flow as building ownership changed from ABC LLC DEF LLC GHI LLC KL LLC MNO LLC
left to right. Every time a property changed y
hands, it became a new LLC (Limited Liabil-
ity Corporation) with new owners.

The blue links in Figure 2 show ownership/
business ties for each LLC. This data was
gathered by the EJO from public records.
Everything appears normal — a different set
of players in each LLC.

Yet, things were not normal. The EJO dis-
covered that some of the LLC owners were
married. As the EJO peeled the onion, more
family ties were found within, and between, & garth
the LLCs.

Figure 3 shows us that these LLCs were
not as separate as they first appeared. The
dark red links reveal family ties found in
public records. The LL.Cs were not indepen-
dent business entities. The business trans-
actions were happening within extended
families! A conspiracy was coming into focus.

The dark red links in Figure 3 reveal two
family clusters. Yet, there was a curious gap
— the transaction between ghi LLC and jkl
LLC. Were these clusters connected? How?
These questions soon led to a key discovery:
the mastermind behind the conspiracy. Con-
spiracies often work in this way — master-
minds are two steps or more from the events
they planned.

Figure 4 reveals the family matriarch and
patriarch. The matriarch (Heather) was dis-
covered in public records, explaining the gap.
Then her current husband (Moe) was a quick
deduction. The gap turned out to be the
dividing line between Heather’s first family
and her current family. She was the point of
overlap between the two groups.

Once Moe was uncloaked, the EJO’s chief
investigator decided to explore how he was
connected — what other business ties did he
have? It turned out that Moe had ownership
interests in several restaurants throughout the
metropolitan area...and he was on the board
of a mortgage company.

-

F LLC HI LLC LLC NO LLC

Cargl Fred Jane Lee

Diane Ike Kate

Heather Moe

ortgage Company

Restaurant 1

E f @)
Figure 5 Heather MJo\Rjestaurant 2

Restaurant 3

A mortgage company? It was not
just any mortgage company, Moe
was on the board of the mortgage
company that had financed many of
the real estate transactions we have
been following here. Moe’s ties
completed the connections of the
conspiracy — the “circle of deceit.”

Figure 6 shows the complete
conspiracy. It was now obvious that
properties exchanged hands not as
independent and valid real estate
investments but as a conspiracy to
avoid fixing the building violations.
The green links represent borrowed
money flowing into the buildings
through new mortgages. As time
went on, and the buildings appreci-
ated in value during a real estate
boom. Loans from the mortgage
company allowed the owners to
“strip mine” the equity from the
buildings. This is a common slum-
lord modus operandi: they suck
money out of a building rather than
put money back in for maintenance.

Network analysis is not just
about maps. Once a map is drawn,
you can measure it. Social network
metrics reveal much about the
nodes and the clusters they form.
Who knows what is going on? Who
wields power or influence? Who is a
key connector? Who is in the “thick
of things” in this conspiracy? Our
metrics reveal Moe and Heather
are most integrated nodes in the
network. The highlighted metrics
in the Report window in Figure 7,
showing the InFlow software, pro-
vides mathematical support to what
is quite obvious in the diagrams.
InFlow [orgnet.com/inflow3.html]
allows us to quickly see the rela-
tionships between “the maps and
the metrics”: the pictures and the
numbers.

The city attorney combined the
network analysis, along with the

ortgage Company

Restaurant 1

&
Moe

|l

Fe B Vew bewes Seap Wede fep

™

N VAD Cow | truse | v |

Heather Restaurant 2
Restaurant 3
ag
= [- [Bx]
| smwt] | 368 S [Fraven] Mo | 1
rigage Company
Restaurant 1
Restaurant 2
Restaurant 3
.
<) B — 2] o
Py G el e e

e T

city’s own extensive investigation
and was able to get a conviction of
key family members. Later, all of
one building’s tenants filed a civil
suit using much of the same evi-
dence and won a sufficient award
to allow all of them to move out
into decent housing. Several tenants
used a part of their award to start
businesses.

The common wisdom is that only
big business and government use
social network analysis. Yet, there
are many individuals and groups
that are learning the craft, and
solving local problems. Although
social network analysis can not
be learned by reading a book, it

does not require a PhD either. Any
intelligent person, under the right
guidance, and with the proper tools,
can apply the methodology to an
appropriate problem and gain enor-
mous insight into what was previ-
ously hidden. |

Valdis is the Founder, and Chief Sci-
entist, at orgnet.com. He is a manage-
ment consultant, researcher, trainer,
author, and the developer of InFlow

software for social and organizational
network analysis (SNA/ONA).

Reprinted with permission of the original author.
First appeared in orgnet.com/slumlords.html

38 SPECIAL

http://orgnet.com/inflow3.html
http://orgnet.com
http://orgnet.com/slumlords.html

Our users are saying...

“l enjoy the feeling of being recognized
but mostly | enjoy knowing my friends
are happy.”

“It's cool realising that people thought
enough about your contribution to
give props.”

When your people feel appreciation every day
they are happier, more engaged
and more productive.

Get started today at

dueprops.com

0 Due Props
Better Recognize

http://dueprops.com

Dream. Design. Print.

MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way info peoples’ hands in a printed magazine format.

Mober 2223, 2009 San Franés

A\

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
info print and digital magazine formats.

€
= Juul"y y
A\

N

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish

Enter promo code HACKER when you set your
magazine price during the publishing process.

Please contact promo@magcloud.com with any questions.

MAGCLOUD

http://www.magcloud.com

	Contents
	FEATURES
	The Cicada Principle

	PROGRAMMING
	Vim Anti-Patterns
	Suffering-Oriented Programming
	Spatial Indexing with Quadtrees & Hilbert Curves
	Comparing JavaScript, CoffeeScript & ClojureScript
	Haskell Web Programming: A Yesod Tutorial
	Designing Great API Docs

	SPECIAL
	Automate Everything
	Criticism and Two Way Streets
	Uncloaking a Slumlord Conspiracy with Social Network Analysis

