
Elon Musk
On Entrepreneurship

Issue 26 July 2012

http://getharvest.com/hackers

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://getharvest.com/hackers
http://duckduckhack.com
http://duckduckhack.com

4 

Curator
Lim Cheng Soon

Contributors
Nikos Michalakis
Andrew Chen
Chris Strom
David Valdman
Justin Kan
Alexandru Nedelcu
Harvey Green
Hynek Schlawack
James Hague
Andreas Zwinkau
Joe Peacock
Tommy MacWilliam
Lou Montulli

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo: Brian Solis (briansolis.com)

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://briansolis.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-26

Contents
FEATURES

06  On Entrepreneurship
By Elon Musk

12  How To Train Your Robot
By Nikos Michalakis

STARTUPS

17  Why You’ll Always Think Your
Product Is Shit
By Andrew Chen

20  How I Tricked Myself into Being
Awesome
By Chris Strom

23  The Psychology of Tackling Hard
Problems
By David Valdman

24  What Good is Experience?
By Justin Kan

PROGRAMMING

26  How to Build a Naive Bayes Classifier
By Alexandru Nedelcu

32  Coding Tricks of Game Developers
By Harvey Green

42  Python Deployment Anti-Patterns
By Hynek Schlawack

46  This is Why You Spent All that Time
Learning to Program
By James Hague

48  Faster than C
By Andreas Zwinkau

SPECIAL

50  “That’s Why You Don’t Have Any
Friends.”
By Joe Peacock

56  What I’ve Learned about Smart
People
By Tommy MacWilliam

58  The Origins of the <Blink> Tag
By Lou Montulli

http://hackermonthly.com/issue-26

6  FEATURES

FEATURES

I actually originally came to Cali-
fornia to study energy physics at
Stanford, but I ended up putting
it on hold in 1995 to start Zip2.

I’ll tell you a little about the process
and exactly what happened there. In
1995, it wasn’t at all clear that the
internet was going to be a big commer-
cial thing. In fact, most of the venture
capitalists that I talked to hadn’t even
heard of the internet, which sounds
bizarre on Sand Hill Road. However,
I wanted to do something there, and
I thought it would be a pretty huge
thing. It was one of those things that
came along once in a very long while,
so I got a deferment at Stanford and
thought I’d give the idea a couple of
quarters. If it didn’t work out, which

I thought it probably wouldn’t, then
I’d go back to school. When I told one
of my professors this, he said, “Well,
I don’t think you’ll be coming back.”
And that was the last conversation I
had with him.

The only way I could think to get
involved in the internet in 1995 was
by starting a company. Apart from
Netscape and one or two others, there
weren’t a lot of companies special-
izing in this area. Since I didn’t have
any money, I decided to create some-
thing that would return money very,
very quickly. So, we thought the media
industry would need help converting
its content from print to electronic
media, and they clearly had the money.
We decided that finding a way to help

By Elon Musk

On Entrepreneurship

  7

them root their media to the internet
would be a sure way to generate rev-
enue. There was no advertising revenue
on the internet at the time.

That was really the basis of Zip2.
We ended up pulling quite a bit of
software for the media industry and
primarily, the print media industry. We
had plenty of investors and customers,
such as Hearst Corporation, Knight
Ridder, and most of the major US print
publishers. We grew the company and
then had the opportunity to sell it to
Compaq in early 1999. And basically,
we sold it for a little over $300 million
dollars in cash. That’s the currency I
highly recommend.

I started Zip2 by writing a program
that allowed you to keep maps and
directions on the internet and a tool
that allowed you to do online manipu-
lation of content; kind of a really
advanced blogging system. Once we
started talking to small newspapers and
media companies, we started gaining
some interest and getting a little bit of
money from them. There were only
six of us at Zip2: three sales people we
hired on contingency by putting an ad
in a newspaper; myself; my brother,
who I convinced to come down from
Canada; and a friend of my Mom’s.

Things were pretty tough in the
beginning because I didn’t have any
money. In fact, I had negative money
because of huge student debts. At one

8  FEATURES

point, I had to choose between rent-
ing a place to live or an office, so I
rented the office instead because it was
cheaper than renting a place to stay.
For awhile, I slept on the futon and
shouted the YMCA on Paige Mullen. It
was the best shape I’ve ever been in.

There was a small ISP on the floor
below us, so we drilled a hole through
the floor and connected to the main
cable, which gave us our internet con-
nectivity for like a hundred bucks a
month. So we had just an absurdly tiny
burn rate as well as a really tiny rev-
enue stream. However, since we actu-
ally had more revenue than expenses,
we were able to say we had positive
cash flow when we talked to VPs. That
helped, I think.

Founding of PayPal
I automatically wanted to do some-
thing more after Zip2. Immediately
after the sale, I’d normally take time
off, but I wanted to find other opportu-
nities in the internet since it was early
1999. I noticed there hadn’t been a lot
of innovation in the financial services
sector. And when you think about it,
money is low bandwidth. You don’t
need some sort of big infrastructure
improvement to do things with it. It’s
really just an entry in the database.

Since the paper form of money is
really only a small percentage of all the
money that’s out there, why not inno-
vate financial services on the Internet?
So, we thought of a couple of different

things we could do. One of the things
was to combine all consumers’ financial
services needs into one website, such
as banking, brokerage, and insurance.
And that was actually quite a difficult
problem to solve, but we solved most
of the issues associated with that.

Then, we had a little feature that
took us about a day. It was about
emailing money from one customer
to another. Basically, you could type
in an email address or, actually, any
unique identifier, and transfer funds
or conceivably stocks or mutual funds
from one account holder to another. If
you tried to transfer money to some-
body who didn’t have an account in
the system, it would forward them
an email inviting them to open an
account.

When we would pitch the idea to
investors for a central financial services
portal for consumers, we’d tell them
how much effort it took to develop the
convenient features. And people would
go, “Hmmm.” We would throw the
email payment feature in as an after-
thought and they would say, “Wow!”
After this reaction, we focused the
company’s business on email payments.

In the early days, our company was
called X.com. There was also another
company called Confinity, which
started out from a different area. Con-
finity had Palm Pilot cryptography and
the demo application they were using
had the ability to beam token pay-
ments from one Palm Pilot to another

  9

via the infrared port. They also had
a website named PayPal where users
could reconcile the beamed payments.
It didn’t take too long for them to
notice the website portion was actually
far more interesting to users than the
Palm Pilot cryptography.

They started leaning their business
in that direction, and in early 2000,
X.com acquired Confinity. About a
year later, we changed the company
name to PayPal. And that’s a summary
of the evolution of the company.

Success through Viral Marketing
PayPal is really a perfect case example
of viral marketing, just like Hotmail.
In this case, customers act like a sales
person for you by bringing in other
customers. In PayPal’s case, they would
send money to a friend and, essentially,
recruit that friend into the network, so
we had this exponential growth. The
more customers, the faster it grew. It
was like bacteria in a Petri dish; it just
keeps going like an S-curve.

I ran PayPal for about the first two
years of its existence. By the end of
year two, we had a million customers.
It gives you a sense of how fast things
grow in that scenario. And we didn’t
have a sales force. Actually, we didn’t
even have a VP of Sales or a VP of
Marketing. And we didn’t spend any
money on advertising.

Selling PayPal
In 2002, PayPal went public. We were
the only internet company to go public
in the first part of that year. It went
reasonably well, although I think we
had more SEC rewrites than any com-
pany I can imagine. I think we set a
record on SEC rewrites. This was right
around the time when there were all
sorts of corporate scandals. So, they put
us through the ringer. Shortly there-
after, about June or July, we struck a
deal and sold the company to eBay
for over $4 billion. But that was when
eBay’s stock price was about $55 and
they hadn’t split. So, I guess, in today’s
dollars we were about $3 billion. So it
worked out pretty well.

Comparing Zip2 and PayPal
 I guess both Zip2 and PayPal involved
software as the heart of the technology,
even though Zip2 was servicing the
media sector and PayPal was servicing
the financial sector. However, the heart
of it was really the software and the
internet Both companies were also in
Palo Alto, where I live.

We also took a similar approach to
building both companies by having a
small group of very talented people
and keeping it small. PayPal, at its
height, probably had 30 engineers for
a system that, I would say, is more
sophisticated than the Federal Reserve
clearing system. I’m pretty sure it is
actually because the Federal Reserve
clearing system sucks.

10  FEATURES

So, what else is there? Generally,
both Zip2 and PayPal operated as your
canonical “Silicon Valley” start up.
You know, a pretty flat hierarchy. And
anyone could talk to anyone. We have
to go for the best idea as opposed to a
person proposing an idea that is con-
sidered to be a winner just because of
who they are.

Obviously, everyone was an equity
stake holder. If there were two paths
that, let’s say, we had to choose
between and one wasn’t obviously
better than the other, then instead of
spending a lot of time trying to figure
out which one was slightly better, we
would just pick one and do it. Some-
times we’d be wrong and we’d pick
ourselves up. But often it’s better to
pick a path and do it than to just vacil-
late endlessly on a choice. We didn’t
worry too much about intellectual
property, paperwork, or legal stuff. We
were really just focused on building the
best product that we possibly could.

Both Zip2 and PayPal were very
product-focused companies. We were
incredibly obsessive about creating
something that would provide the best
possible customer experience. And that
was a far more effective selling tool
than having a giant sales force or think-
ing of marketing gimmicks or twelve-
step processes, or whatever.

The Right Time to Sell
We had several offers from a number
of different entities for PayPal, and in
fact, the closer we got to IPO, the more
offers we got. However, we always
felt that those offers undervalued the
company and subsequently we went
public. I think the public markets kind
of indicated the value of the company,
and that’s one of the good things about
public markets. It’s difficult for private
companies to say how much they’re
worth because they need some kind of
metric. Are you going to go for future
earnings? Are you going to base it on
revenue? What are your comparables
going to be? There are all sorts of
questions and the value of a company
is really up for debate. When you’re
public, however, you’re worth what
the market says you’re worth. Yes, eBay
made a number of offers prior to our
IPO that would substantially blown the
value once we went public.

eBay initially had Billpoint and then
there was eBay Payments. It was a
really tough, long running battle of
PayPal versus eBay’s payment system.
It was certainly very challenging. There
were times when it felt like we were
trying to win a land war in Asia and
they kind of set the ground rules, or
trying to beat Microsoft in their own
operating system. It’s really pretty hard
and it took a lot of our effort to actu-
ally beat eBay on their own system.

  11

One of the long-term risks for the
company was that eBay would one day
prevail, and one way to retire that risk
obviously was to sell to eBay.

Qualities of an Entrepreneur
Successful entrepreneurs probably
come in all sizes, shapes, and flavors.
I’m not sure there’s any one particular
critical quality. For me, some of the
things I’ve described already are very
important, such as an obsessive nature
with respect to the quality of the
product. Being obsessive compulsive
is a good thing in this context. Also,
really liking what you do is important
because even if you’re the best of the
best, there’s always a chance of failure,
so I think it’s important that you really
like whatever you’re doing. If you don’t
like it, life is too short. And if you
really like what you’re doing, you think

about it even when you’re not working.
It’s something that your mind is drawn
to and if you don’t like it, you just
really can’t make it work. n

Elon Musk is the co-founder of SpaceX, Tesla
Motors and PayPal.

Originally appeared on Stanford Technology Ventures
Program (STVP) Entrepreneurship Corner in video
format: hn.my/elon (ecorner.stanford.edu)

Photograph by Brian Solis (briansolis.com)

“Really liking what you do is important
because even if you’re the best of the
best, there’s always a chance of failure.”

http://hn.my/elon

12  FEATURES

Last Sunday, I taught 6 kids ages
5 to 7 how to program. “In
what programming language?”

you may ask. Well…I didn’t use a pro-
gramming language, at least none that
you know of. In fact, I didn’t even use
a computer. Instead, I devised a game
called “How To Train Your Robot.”
Before I explain how the game works,
let me tell my motivation.

I learned how to program during
my freshman year at MIT when I was
19. It’s not because I didn’t have a
computer at home or I hadn’t heard
about programming languages. It was
because (a) I thought programming
was boring, and (b) no one had told
me why I should bother. In fact, my
computer teacher in high school had
told me “you don’t need to waste your
time learning how to program. Now
we have visual tools to build programs.
Programming languages are already
obsolete.” That was in 1994 and he was

referring to Visual Basic. Luckily for
me, MIT wiped all that nonsense away
in a matter of weeks. But does one
need to wait to go to college to get the
proper education?

Learning how to program is going
to be the most useful new skill we can
teach our kids today. More than ever
our lives depend on how smart we are
when we instruct computers. They
hold our personal data and they make
decisions for us. They communicate
for us, and they are gradually becom-
ing an extension of our brains. If we
don’t learn programming as part of
our childhood, we will never evolve.
As the famous futurist, Ray Kurzweil,
put it “The only second language you
should worry about your kids learning
is programming.”

By Nikos Michalakis

How To Train Your Robot

  13

How To Train Your Robot
The game works as follows:
every kid is turned into a
“robot master” and their
mom or dad becomes their
“robot.” I give each kid a
“Robot Language Diction-
ary” and explain to them
that this is the language
their robot understands.
The dictionary has symbols
for “move left leg forward,”
“turn left,” “grab,” “drop,” etc.

14  FEATURES

 The goal is for the robots to go
through an obstacle course, pick up a
ball, and bring it back. The kids have to
write a program that will tell the robot
how to do all that. Every time they
write a program, they hand it to their
robot, and the robot executes it. To do
that, I give each kid a pen and paper
where they copy symbols from the
dictionary to write their programs and
off their robots go!

 The fun part begins when each robot
retrieves the ball. Now I let kids invent
their own moves and symbols that they
add to their dictionary and then teach
their robots. There is no limit to what
the kids come up with.

I designed the class to teach some
very basic principles of computer sci-
ence and programming:

■■ Programming languages are just
another way to communicate to an
entity (via programs).

■■ Programs are recipes for automating
stuff.

  15

However, I was pleasantly surprised
on how much more the kids learned.
On their own they figured out the fol-
lowing things (in a 30-min session):

■■ Program Parameterization: Instead of
putting a forward step ten times, they
put a 10 in front of the “step” symbol
(A five-year-old figure it out and
asked me if she could do it).

■■ Composition: Grouping of a set of
moves (“move left leg forward, then
move right leg forward and do this
combo 10 times”)

■■ Abstraction: “Run in a circle, then say
“I’m dizzy!”, then call this the “Run
Dizzy” program and do it 100 times.
(For some reason, kids loved making
their parents repeat stuff 100 times
over.)

■■ Unit testing: They’d write a test pro-
gram to get the parents moving a few
steps, have their parents run it, then
fix it and run it again, and then add a
few more steps until they reach the
goal.

16  FEATURES

I’ve ran the class twice now and I’ve
seen the same patterns, which sup-
port my belief that when kids have fun,
they get very smart and creative about
programming. Many of the parents
plan to play the game at birthday par-
ties. If you have questions about how
to set up the game, don’t hesitate to
write. You can find my contact info at
facebook.com/drtechniko

You can also find instructions on how
to teach the class as well as materials I
used here [hn.my/robotm].

I hope we learned something useful
today,

DrTechniko n

Nikos Michalakis graduated from MIT with a
degree in Electrical Engineering and Computer
Science. As DrTechniko, in his spare time he
teaches kids about computer science and tech-
nology through storytelling and games. He lives
in Brooklyn with his wife and their son and works
for Knewton, an education technology startup.

Reprinted with permission of the original author.
First appeared in hn.my/drtechniko (drtechniko.com)

Photographs by Nikos Michalakis.

http://facebook.com/drtechniko
http://hn.my/robotm
http://hn.my/drtechniko

  17

You’ve said this before. We all
have.
Anyone working on getting

their first product out to market will
often have the feeling that their prod-
uct isn’t quite ready. Or even once it’s
out and being used, nothing will seem
as perfect as it could be, and if you
only did X, Y, and Z, then it would be
a little better. In a functional case, this
leads to a great roadmap of potential
improvements, and in a dysfunctional
case, it leads to unlaunched products
that are endlessly iterated upon with-
out a conclusion.

About a year ago I visited Pixar’s
offices and learned a little about this
product, and I wanted to share this
story:

Over at Pixar…
Matt Silas, a long-time Pixar
employee offered to take me

on a tour of their offices and I accepted
his gracious offer. After an hour-long
drive from Palo Alto to Emeryville,
Matt showed up while I was admiring
a glass case full of Oscars, and started a
full tour.

I’ve always been a huge fan of
Pixar — not just their products, but
also their process and culture. There’s
a lot to say about Pixar and their
utterly fascinating process for creat-
ing movies, and I’d hugely recommend
this book: To Infinity and Beyond
[hn.my/pixarbook]. It gave me a kick
to know that Pixar uses some very
collaborative and iterative methods for
making their movies — after all, a lot
of what they do is software. Here are
some quick examples:

By Andrew Chen

Why You’ll Always Think
Your Product Is Shit

STARTUPS

“My product isn’t quite there yet.”

http://hn.my/pixarbook

18  STARTUPS

■■ Pixar’s teams are ultimately a col-
laboration of creative people and
software engineers. This is reflected
at the very top by John Lasseter and
Ed Catmull.

■■ The process of coming up with a
Pixar movie starts with the story,
then the storyboard, then many other
low-fidelity methods to prototype
what they are ultimately make.

■■ They have a daily “build” of their
movies in progress so they know
where they stand, with sketches
and crappy CGI filling holes where
needed. Compare this to traditional
moviemaking where it’s only at the
end.

■■ Sometimes, as with the original ver-
sion of Toy Story, they have to stop
doing what they’re doing and restart
the entire moviemaking process since
the whole thing isn’t clicking. Sound
familiar, right?

The other connection to the tech
world is that Steve Jobs personally
oversaw the design of their office space.
Here’s a great little excerpt on this,
from director Brad Bird (who directed
The Incredibles):

“Then there’s our building. In the
center, he created this big atrium area,
which seems initially like a waste of
space. The reason he did it was that
everybody goes off and works in their
individual areas. People who work on
software code are here, people who ani-
mate are there, and people who design
are over there. Steve put the mailboxes,
the meetings rooms, the cafeteria, and,
most insidiously and brilliantly, the
bathrooms in the center — which
initially drove us crazy — so that you
run into everybody during the course of
a day. [Jobs] realized that when people
run into each other, when they make
eye contact, things happen. So he made
it impossible for you not to run into the
rest of the company.”

Anyway, I heard a bunch of stories
like this and more. As expected, the
tour was incredible, and near the end,
we stopped at the Pixar gift shop.

  19

There, I asked Matt a casual question
that had an answer I remember well, a
year later:

Me: “What’s your favorite Pixar
movie?”

Matt: *SIGH*

Me: “Haha! Why the sigh?”

Matt: “This is such a tough question,
because they are all good. And yet at
the same time, it can be hard to watch
one that you’ve worked on, because
you spend so many hours on it. You
know all the little choices you made,
and all the shortcuts that were taken.
And you remember the riskier things
you could have tried but ended up not,
because you couldn’t risk the schedule.
And so when you are watching the
movie, you can see all the flaws, and
it isn’t until you see the faces of your
friends and family that you start to
forget them.”

Wow! So profound.
A company like Pixar, who undoubt-

edly produces some of the most
beloved and polished experiences in
the world, ultimately still cannot pro-
duce an outcome where everyone on
the team thinks it is the best. And after
thinking about why, the reason is obvi-
ous and simple: to have the foresight
and the skill to refine something to the
point of making it great also requires

the ability to be hugely critical. More
critical, I think, than your ability to
even improve or resolve the design
problems fast enough. And because
design all comes to making a whole
series of tradeoffs, ultimately you don’t
end up having what you want.

The lesson: You’ll always be unhappy
What I took away from this conver-
sation is that many of us working to
make our products great will never be
satisfied. A great man once said, your
product is shit, and maybe you will
always think it is. Yet at the same time,
it is our creative struggle with what we
do that ultimately makes our creations
better and better. And one day, even
if you still think your product stinks,
you’ll watch a customer use it and
become delighted.

And for a brief moment, you’ll forget
what it is that you were unhappy
about. n

Andrew Chen is a blogger and entrepreneur
focused on consumer internet, metrics and
user acquisition. He is an advisor/angel for
early-stage startups and is also a 500 Startups
mentor.

Reprinted with permission of the original author.
First appeared in hn.my/shit (andrewchen.co)

http://hn.my/shit

20  STARTUPS

By Chris Strom

How I Tricked Myself
into Being Awesome

Like most developers, I am an
introvert, so it is hard to say
this:

I am awesome.
Fuuuuuu.... I can’t even leave it at

that. I look at so many amazing people
in the Ruby, Javascript, and other com-
munities that actually are amazing, and
I feel like I haven’t done anything. But
even so, looking back at the 366 days
of the last year, what I did was, well...
amazing.

I wrote three books on very differ-
ent technologies that I knew nothing
about.

I wrote The SPDY Book, which is
still the only book on SPDY:

 Three months later, I co-authored
Recipes with Backbone.js with Nick
Gauthier:

 Three months later, I wrote the first
book on Dart, Dart for Hipsters:

  21

Each of these technologies has two
things in common:

1.	They are game changing (or at least
possibly).

2.	 I knew nothing about them before I
started writing them.

What business did I have writing
books on topics about which I knew
nothing? Well, let me put it this way:
I did it, so why shouldn’t I (or anyone
else)?

How did I do it?
I blogged every single day. For one full
year. 366 days. Every day. No matter
what.

I honestly don’t know why I started
doing this. One night I had a brilliant
idea and before I stopped and thought
about how stupid it was, I publicly
committed myself to doing it.

And it worked. Every night, I ask a
question to which I don’t know the
answer, and I try my damnedest to
answer it.

 Every time I do this, I learn. The
daily deadline forces me to learn. Blog-
ging about it challenges my assump-
tions and makes me learn even more.

And then, doing it again the next
day reinforces the learning. As does
writing the book. And the second
edition.

 I am proud that I didn’t let this
get in the way of what’s important. I
still took vacations with the family —
drove to the beach and Disney World.
Birthdays, anniversary, sickness — I was
there for it all.

And in the end, what did I learn?
Well aside from a ton about coos tech-
nologies, I learned that:

I tricked myself into being awesome.

22  STARTUPS

I heard a story on RadioLab about a
lady named Zelda. She tricked herself
into quitting smoking by swearing that
she would donate $5,000 to the KKK
if she ever smoked another cigarette.
And she never did. Would she have
really donated that money if she had
given in? Maybe not, but it was enough
for her to have convinced herself that
it would happen.

And, in the end, I did the same.
Would the world have ended if I
missed a day? Of course not. Very few,
if any people would have noticed. But I
would have noticed because I commit-
ted to doing this. And, after 366 days,
I have more than not smoking to show
for it. I have three books, the last of
which is being published by The Prag-
matic Programmers. n

Chris is an author and web developer at EEE
Computes LLC with more than 10 years pro-
fessional experience in a variety of domains.
Despite this extensive background, you could
fill a book with what he does not know, which
is rather the point.

Reprinted with permission of the original author.
First appeared in hn.my/tricked (japhr.blogspot.com)

http:// hn.my/tricked

23  STARTUPS

The thing about hard problems
is that there are many difficul-
ties and few solutions. Sounds

obvious, but what’s often overlooked
is the psychological component to this
asymmetry. There’s a simple reason
why tackling a hard problem can lead
to depressive symptoms: you’re neces-
sarily wrong 99% of the time.

I’m getting my PhD in math, and
developing a web app/startup on the
side. I can tell you one thing from my
PhD research that I can carry over to
my entrepreneurial ambitions: you only
have to be right 1% of the time. The
hard part is, you need to be psychologi-
cally prepared to be wrong all other
times.

I haven’t seen much discussion of
this idea, but I’ve faced it repeatedly
myself, and I often see it in others. I’ve
seen it so often I’m convinced of its
pervasiveness. Here’s an example. One
of my peers tells me his numerics code
isn’t working:

Me: Have you tried this test case?
Him: No, actually.
Me: Well that may isolate the bug.

Him: But I’m afraid that it won’t
work.

Sound silly and contrived? It isn’t,
and I have complete sympathy for
this situation. So many times in my
work I’ve fantasized about the solu-
tion to an idea, and have been too
afraid to implement it because of the
subliminal fear that I will be, yet again,
wrong. It’s a Pavlovian response to the
track record of being repeatedly disap-
pointed. Meanwhile, I delight in having
new ideas, and enjoy brainstorming
them. But without implementing
them, the process is worthless.

The point is to be aware. If you find
yourself resisting an obvious step due
to an irrational fear, step back and force
yourself to push onward. You only
need to be right 1% of the time. n

David Valdman is finishing his PhD in applied
math at UC Santa Barbara this summer. Soon
to be “not that kind of doctor”. He’s also the
founder of Quip Video, a web app for anno-
tating online video. Follow David on twitter
at @dmvaldman

By David Valdman

The Psychology of Tackling
Hard Problems

Reprinted with permission of the original author.
First appeared in hn.my/psych (davidvaldman.com)

http://twitter.com/dmvaldman
http://hn.my/psych

24  STARTUPS

When I didn’t have any
experience, I thought that
experience was totally

worthless. Emmett and I taught our-
selves how to build web applications
in a few months in college and built
the first version of Kiko pretty quickly.
I did the front end by piecing together
JavaScript tutorials until we had some-
thing that resembled a calendar.

We thought we were pretty awe-
some. If we could build a web app that
easily and drum up a bunch of public
interest, then it seemed to us that
everyone should be starting startups
right out of college, and that anyone
who wasn’t was just too scared. What
was the point of waiting? You aren’t
getting any younger.

When I think about that first code-
base today I want to vomit in my own

mouth. I am glad that I no longer have
access because I want to deny it ever
existed. It was a mess of spaghetti code,
and even though we built it quickly, it
took a lot longer than it should have.

Ironically, now that I have experi-
ence, I think experience is priceless.
What’s made me change my mind?

■■ Experience makes you move more
quickly. It turns out I’m still not a
wonderful programmer. I am, how-
ever, a pretty decent web developer,
and this is entirely due to experi-
ence. Need a Rails CRUD app with
an API? Boom, I’ve been doing that
for seven years now. I built the entire
backend, frontend, and API for Exec
myself in three weeks in January.

■■ Experience helps you focus on the
right things. When you don’t know
what’s important, it is easy to think

By Justin Kan

What Good is
Experience?

  25

every decision is important. Most of
them aren’t. Having experience helps
you know what decisions you can
ignore, postpone, or delegate (almost
all of them), and what things you
actually need to do right now.

■■ Experience gives you confidence.
We’ve raised venture money for our
companies before; I know I can do
it again. I’ve built web apps before;
I know I don’t need to hire a pro-
grammer to replace myself unless we
find someone who is really excellent.
In the meantime, I can wait. When
you’ve done something before, you
aren’t worried you can’t do it again.

I still think there are some potential
downsides to having experience that
are worth watching out for:

■■ Experience tends to pre-empt inno-
vation. It’s been said before, but
when you have a lot of experience in
a certain area, you generally think of
solutions and approaches that have
worked for you in the past. Some-
times this prevents you from taking
a fresh approach which ultimately
would work out better.

■■ Experience takes time to get. Waiting
for experience is also an excuse not
to get started. By the time you feel
comfortable and confident enough
to jump off, the moment might have
passed.

■■ You know some things to be impossi-
ble. Most things that were impossible
or impractical years ago became pos-
sible or will become possible some
time later. Your experience might tell
you that something you want to do
can’t be done. Other people will go
on to do them.

And lastly, something I’ve been won-
dering: is it possible to fake experience
by getting advice? Perhaps for highly
specialized topics, like how to scale
your exploding website. However, I
think that there are a great many things
that people are destined to learn them-
selves the hard way. So, don’t worry too
much about trying to find a hack to get
experience, when you get enough expe-
rience you’ll be experienced enough to
know one doesn’t exist. n

Justin Kan is the founder and CEO of Exec, your
on demand work force. Previously he founded
Justin.tv, TwitchTV and Socialcam. He is a part
time partner at Y Combinator.

Reprinted with permission of the original author.
First appeared in hn.my/exp (justinkan.com)

http://hn.my/exp

26  PROGRAMMING

Some use-cases for building a
classifier:

■■ Spam detection; for example, you
could build your own Akismet API.

■■ Automatic assignment of categories
to a set of items.

■■ Automatic detection of the primary
language (e.g. Google Translate).

■■ Sentiment analysis, which in simple
terms refers to discovering if an opinion
is about love or hate for a certain topic.

In general, you can do a lot better
with more specialized techniques,
however the Naive Bayes classifier is
general-purpose, simple to implement,
and good-enough for most applica-
tions. And while other algorithms give
better accuracy, I discovered that
having better data in combination with
an algorithm that you can tweak gives
better results for less effort.

In this article I’m describing the
math behind it. Don’t fear the math,
as this is simple enough that a high-
schooler could understand. And even
though there are a lot of libraries out
there that already do this, you’re far
better off understanding the concept
behind it. Otherwise, you won’t be
able to tweak the implementation in
response to your needs.

0. The Source Code
I published the source-code associated
at github.com/alexandru/stuff-classifier.
The implementation itself is at lib/
bayes.rb, with the corresponding
test/test_002_naive_bayes.rb.

1. Introduction to Probabilities
Let’s start by refreshing forgotten
knowledge. Again, this is very basic
stuff, but if you can’t follow the
theory here, you can always go to the

By Alexandru Nedelcu

How to Build a Naive
Bayes Classifier

PROGRAMMING

http://github.com/alexandru/stuff-classifier

  27

probabilities section on Khan Academy
[hn.my/proba].

1.1. Events and Event Types
An “event” is a set of outcomes (a
subset of all possible outcomes) with a
probability attached. So when flipping
a coin, we can have one of these two
events: tail or head. Each of them has a
probability of 50%. Using a Venn
diagram, this would look as follows:

 The example below clearly shows
the dependence between “rain” and
"cloud formation” since rain can only
happen if there are clouds:

 The relationship between events is
very important, as you’ll see next:

■■ 2 events are disjoint (exclusive) if
they can’t happen at the same time
(a single coin flip cannot yield a tail
and a head at the same time). For
Bayes classification, we are not con-
cerned with disjoint events.

■■ 2 events are independent when they
can happen at the same time, but
the occurrence of one event does
not make the occurrence of another
more or less probable. For example,
the second coin-flip you make is not
affected by the outcome of the first
coin-flip.

■■ 2 events are dependent if the out-
come of one affects the other. In the
example above, clearly it cannot rain
without a cloud formation. Also, in a
horse race, some horses have better
performance on rainy days.

What we are concerned with here is
the difference between dependent and
independent events because calculat-
ing the intersection (both happening
at the same time) depends on it. So,
for independent events, calculating the
intersection is easy:

Some examples:

■■ If you have 2 hard-drives, each of
them having a 0.3 (30%) probability
of failure within the next year, that
means there’s a 0.09 (9%) probability
of them failing both within the next
year.

■■ If you flip a coin 4 times, there’s a
0.0625 probability of getting a tail 4
times in a row (0.5 ^ 4).

Things are not so simple for depen-
dent events, which is where the Bayes
Theorem comes into play.

http://hn.my/proba

28  PROGRAMMING

1.2. Conditional Probabilities and the
Bayes Theorem
Let’s take one example with the fol-
lowing stats:

■■ 30 emails out of a total of 74 are
spam messages.

■■ 51 emails out of those 74 contain the
word “penis.”

■■ 20 emails containing the word “penis”
have been marked as spam.

So the question is: what is the prob-
ability that the latest received email is
a spam message, given that it contains
the word “penis”?

These 2 events are clearly dependent,
which is why you must use the simple
form of the Bayes Theorem:

With the solution being:

The above example is simple so you
can see the result without complicating
yourself with the Bayes formula.

1.3. The Naive Bayes Approach
Let us complicate the problem above
by adding to it:

■■ 25 emails out of the total contain the
word “viagra.”

■■ 24 emails out of those have been
marked as spam.

What’s the probability that an email
is spam, given that it contains both
“viagra” and “penis”?

Shit just got more complicated,
because now the formula is this one:

 And you definitely don’t want to
bother with it if we keep adding words.
But what if we simplified our assump-
tions and just say that the occurrence
of penis is totally independent from
the occurrence of viagra? Then the
formula just got much simpler:

 To classify an email as spam, you’ll
have to calculate the conditional
probability by taking hints from the
words contained. And the Naive Bayes
approach is exactly what I described

  29

above: we make the assumption that
the occurrence of one word is totally
unrelated to the occurrence of another,
to simplify the processing and com-
plexity involved.

This does highlight the flaw of this
method of classification, because
clearly the 2 events we picked (viagra
and penis) are correlated and our
assumption is wrong. But this just
means our results will be less accurate.

2. Implementation
I’ll mention it again: you can take a
look at the source-code published at
github.com/alexandru/stuff-classifier

2.1. General Algorithm
You simply get the probability for a
text to belong to each of the categories
you test against. The category with the
highest probability for the given text
wins:

 Do note that above I also eliminated
the denominator from our original for-
mula because it is a constant that we
do not need (called evidence).

2.2. Avoiding Floating Point
Underflow
Because of the underlying limits of
floating points, if you’re working with
big documents (not the case in this
example), you do have to make one
important optimization to the above
formula:

■■ Instead of the probabilities of each
word, you store the (natural) loga-
rithms of those probabilities.

■■ Instead of multiplying the numbers,
you add them instead.

So instead of the above formula, if
you need this optimization, then use
this one:

 2.3. Training
Your implementation must have a
training method. Here’s how mine
looks like:

def train(category, text)
 each_word(text) {|w| increment_
word(w, category)}
 increment_cat(category)
end

And its usage:

classifier.train :spam, "Grow your
penis to 20 inches in just 1 week"
classifier.train :ham, "I'm
hungry, no I don't want your
penis"

For the full implementation, take a
look at base.rb

2.4. Getting Rid of Stop Words /
Stemming
First of all, you must get rid of the
junk. Every language has words that are
so commonly used that they become
meaningless for any kind of classifica-
tion you may want to do. For instance,
in English, you can safely strip out such
words as “the,” “to,” “you,” “he,” “only,”
“if,” and “it” from the text.

I’ve compiled a list of such words
in this file: stop_words.rb. You can
compile such a list by yourself if

30  PROGRAMMING

you’re using a language other than
English. Head over to Project Guten-
berg [gutenberg.org], download some
books in the language you want, count
the words in them, sort by popular-
ity in descending order, and keep the
top words as words that you can safely
ignore.

Also, our classifier is really dumb in
the sense that it does not care about
the meaning or context of a word. So
there’s a problem: consider the word
“running.” What you want is to treat
this just as “run”, which is the morpho-
logical root of the word. You also want
to treat “parenting” and “parents” as
“parent.”

This process is called stemming and
there are lots of libraries for it. I think
currently the most up-to-date and
comprehensive library for stemming is
Snowball. It’s a C library with lots of
available bindings, including for Ruby
and Python, and it even has support for
my native language (Romanian).

Take a look at what I’m doing in
tokenizer.rb, where I’m getting rid of
stop words and stemming the remain-
ing words.

each_word('Hello world! How are
you?')
=> ["hello", "world"]
each_word('Lots of dogs, lots of
cats! This is the information
highway')
=> ["lot", "dog", "lot", "cat",
# 	 "inform", "highway"]
each_word("I don't really get what
you want to accomplish. There is a
class TestEval2, you can do test_
eval2 = TestEval2.new afterwards.
And: class A ... end always yields
nil, so your output is ok I guess
;-)")

=> ["really", "want",
#	 "accomplish", "class",
"testeval", "test", "eval",
#	 "testeval", "new", "class",
#	 "end", "yields", "nil",
"output", "ok", "guess"]

2.5. Implementation Guidelines
When classifying emails for spam, it
is a good idea to be sure that a certain
message is a spam message. Otherwise,
users may get pissed by too many false
positives.

Therefore it is a good idea to have
thresholds. This is how my implemen-
tation looks:

  31

def classify(text, default=nil)
 # Find the category with the highest
 # probability

 max_prob = 0.0
 best = nil

 scores = cat_scores(text)
 scores.each do |score|
 cat, prob = score
 if prob > max_prob
 max_prob = prob
 best = cat
 end
 end

 # Return the default category in case
 # the threshold condition was not met.
 # For example, if the threshold for
 # :spam is 1.2
 # :spam => 0.73, :ham => 0.40 (OK)
 # :spam => 0.80, :ham => 0.70
 # (Fail, :ham is too close)

 return default unless best
 threshold = @thresholds[best] || 1.0

 scores.each do |score|
 cat, prob = score
 next if cat == best
 return default if prob * threshold >
max_prob
 end

 return best
end

Final Words
My example involved spam
classification, but this is not
how modern spam classifiers
work. Because the independence
assumptions are often inaccu-
rate, this type of classifier can be
gamed by spammers to trigger a
lot of false positives, which will
make the user eventually turn
the feature off.

But it is general purpose, being
useful not only for spam detec-
tion, but also for lots of other
use-cases, and it’s enough to get
you started. n

Alexandru is an experienced software
developer that ventured across any-
thing he found interesting. Besides
trying to make people’s lives better,
he also enjoys cooking and spending
time with his toddler. He lives in Roma-
nia and works remotely for U.S. based
startups.

Reprinted with permission of the original author.
First appeared in hn.my/bayes (bionicspirit.com)

http://hn.my/bayes (bionicspirit.com)

32  SPECIAL

By Harvey Green

Coding Tricks of Game
Developers

If you’ve got any real world pro-
gramming experience, then no
doubt at some point you’ve had

to resort to some quick and dirty fix
to get a problem solved or a feature
implemented while a deadline loomed
large. Game developers often experi-
ence a horrific “crunch” (also known as
a “death march”), which happens in the
last few months of a project leading up
to the game’s release date. Failing to
meet the deadline can often mean the
project gets cancelled or even worse,
you lose your job. So what sort of tricks
do they use while they’re under the
pump, doing 12+ hour days for weeks
on end?

Below are some classic anecdotes and
tips (many thanks to Brandon Sheffield
who originally put together this article
[hn.my/dirty] on Gamasutra). I have
included a few of his stories and also
added some more from newer sources.

The Programming Antihero
–Noel Llopis
I was fresh out of college, still wet
behind the ears, and about to enter
the beta phase of my first professional
game project, a late-90s PC title. It
had been an exciting rollercoaster ride,
as projects often are. All the content
was in and the game was looking good.
There was one problem though: we
were way over our memory budget.

Since most memory was taken up by
models and textures, we worked with
the artists to reduce the memory foot-
print of the game as much as possible.
We scaled down images, decimated
models, and compressed textures.
Sometimes we did this with the sup-
port of the artists, and sometimes over
their dead bodies.

We cut megabyte after megabyte,
and after a few days of frantic activity,
we reached a point where we felt there
was nothing else we could do. Unless

http://hn.my/dirty

  33

we cut some major content, there was
no way we could free up any more
memory. Exhausted, we evaluated our
current memory usage. We were still
1.5 MB over the memory limit!

At this point one of the most expe-
rienced programmers in the team, one
who had survived many years of devel-
opment in the “good old days,” decided
to take matters into his own hands. He
called me into his office, and we set
out upon what I imagined would be
another exhausting session of freeing
up memory.

Instead, he brought up a source file
and pointed to this line:

static char buffer[1024*1024*2];

“See this?” he said. And then deleted
it with a single keystroke. Done!

He probably saw the horror in my
eyes, so he explained to me that he
had put aside those two megabytes
of memory early in the development
cycle. He knew from experience that it
was always impossible to cut content
down to memory budgets, and that
many projects had come close to failing
because of it. So now, as a regular prac-
tice, he always put aside a nice block
of memory to free up when it’s really
needed.

He walked out of the office and
announced he had reduced the
memory footprint to within budget
constraints. He was toasted as the hero
of the project.

As horrified as I was back then about
such a “barbaric” practice, I have to
admit that I’m warming up to it. I
haven’t gotten into the frame of mind
where I can put it to use yet, but I
can see how sometimes, when you’re
up against the wall, having a bit of
memory tucked away for a rainy day
can really make a difference. Funny
how time and experience changes
everything.

Cache It Up –Andrew Russell
To improve performance when you are
processing things in a tight loop, you
want to make the data for each itera-
tion as small as possible, and as close
together as possible in memory. That
means the ideal is an array or vector of
objects (not pointers) that contain only
the data necessary for the calculation.

This way, when the CPU fetches the
data for the first iteration of your loop,
the next several iterations worth of
data will get loaded into the cache with
it.

There’s not really much you can do
with using fewer and faster instructions
because the CPU is as fast as it’s going to
get, and the compiler can’t be improved.
Cache coherence is where it’s at. This
article [hn.my/coherence] contains a
good example of getting cache coher-
ency for an algorithm that doesn’t
simply run through data linearly.

http://hn.my/coherence

34  SPECIAL

Plan Your Distractions –Jay Barnson
The Internet is one of the greatest tools
ever invented for both improving and
destroying productivity. Twitter and
forums and blogs and instructional
websites can be extremely motivational
and educational, but they can also be
a distraction that completely destroys
all hope of ever getting anything done.
One thing I’ve done in the past which
has proven pretty successful is to stick
to a plan for when I can spend some
minutes checking email and Twitter, or
play a quick game or something. Either
at the completion of a task, or after a
period of time (say one five-minute
break every hour). Otherwise, the
browser’s only use is for reading refer-
ence manual pages, if necessary. That
way I turn a potential distraction into a
motivating tool.

Collateral damage –Jim Van Verth
Don’t know how many remember
Force 21, but it was an early 3D RTS
which used a follow cam to observe
your current platoon. Towards the end
of the project we had a strange bug
where the camera would stop fol-
lowing the platoon — it would just
stay where it was while your platoon
moved on and nothing would budge
it. The apparent cause was random
because we couldn’t find a decent
repro case. Until, finally, one of the
testers noticed that it happened more
often when an air strike occurred near

your vehicles. Using that info I was able
to track it down.

Because the camera was using veloc-
ity and acceleration and was collidable,
I derived it from our PhysicalObject
class, which had those characteristics. It
also had another characteristic: Physi-
calObjects could take damage. The air
strikes did enough damage in a large
enough radius that they were quite
literally “killing” the camera.

I did fix the bug by ensuring that
cameras couldn’t take damage, but just
to be sure, I boosted their armor and
hit points to ridiculous levels. I believe
I can safely say we had the toughest
camera in any game.

The Blind Leading the Blind
–Maurício Gomes
At university, there was a team that
made a FPS flash game. For some
bizarre reason, the programmer, instead
of checking if the character was col-
liding with the wall to keep you from
going there, he did the inverse: he
checked if there was a wall, and only
allowed you to move parallel to it!

This sparked a bizarre bug: in cross-
ings or T junctions in the level, you
could not actually cross, only turn to
the passage on your left or right. The
deadline was closing, and they had no
idea on how to fix it.

Then the team writer fixed the issue;
he told the artist to add an anima-
tion of hands touching the walls, and

  35

then he added in the background story
that the main character was blind and
needed to constantly touch the walls to
know where he was going.

You Wouldn’t Like Me When I’m
Angry –Nick Waanders
I once worked at THQ studio Relic
Entertainment on The Outfit, which
some may remember as one of the
earlier games for the Xbox 360. We
started with a PC engine (single-
threaded), and we had to convert it
to a complete game on a next-gen
multi-core console in about 18 months.
About 3 months before shipping, we
were still running at about 5 FPS on
the 360. Obviously this game needed
some severe optimization.

When I did some performance mea-
surements, it became clear that as
much as the code was slow and very
“PC,” there were also lots of problems
on the content side as well. Some
models were too detailed, some shaders
were too expensive, and some missions
simply had too many guys running
around.

It’s hard to convince a team of 100
people that the programmers can’t
simply “fix” the performance of the
engine, and that some of the ways
people had gotten used to working
needed to change. People needed to
understand that the performance of the
game was everybody’s problem, and I
figured the best way to do this is with

a bit of humor that had a bit of hidden
truth behind it.

The solution took maybe an hour. A
fellow programmer took 4 pictures of
my face: one really happy, one normal,
one a bit angry, and one where I am
pulling my hair out. I put this image
in the corner of the screen, and it was
linked to the frame rate. If the game
ran at over 30fps, I was really happy, if
it ran below 20, I was angry.

After this change, the whole FPS
issue transformed from, “Ah, the pro-
grammers will fix it.” to, “Hmm, if I
put this model in, Nick is going to be
angry! I’d better optimize this a little
first.” People could instantly see if a
change they made had an impact on
the frame rate, and we ended up ship-
ping the game at 30fps.

It’s Not a Bug,It’s a Feature!
–Philip Tan
I worked on an RPG in which we were
trying to get the NPCs (Non-player
Characters) to spot when you were in
range, walk up to you, and strike up a
conversation with you by activating the
dialog system.

We forgot to add code to distinguish
NPCs from PCs (Player Characters), so
we’d walk into town and all the NPCs
would be talking with each other.
Because all NPC AI code used the
same dialog template, they actually got
a few sentences in before the conversa-
tions became nonsensical. And because

36  PROGRAMMING

character dialog was broadcast, you
could read everything they said if you
were in range.

We decided to turn that bug into a
major feature.

Dirty Deeds –Tim Randall
The engine team at Gremlin Interac-
tive used to keep a single glove in their
office. When someone asked why it was
there, they were told it was only used
when someone was about to type some
really dirty code. It wasn’t so much
a case of not wanting to leave finger-
prints but rather not wanting to actu-
ally touch the dirtiest fixes!

Explicit Conditional Hinting
–ZorbaTHut
A very, very low-level tip, but one that
can come in handy: most compilers
support some form of explicit con-
ditional hinting. GCC has a function
called __builtin_expect which lets
you inform the compiler what the
value of a result probably is. GCC can
use that data to optimize condition-
als to perform as quickly as possible in
the expected case, with slightly slower
execution in the unexpected case.

if(__builtin_expect(entity-
>extremely_unlikely_flag, 0)) {
 // code that is rarely run
}

I’ve seen a 10-20% speedup with
proper use of this.

Objective Oriented Programming
–Anonymous
Back at a game studio, I think it was
near the end of the project, we had an
object in one of the levels that needed
to be hidden. We didn’t want to re-
export the level and we did not use
checksum names. So right smack in
the middle of the engine code we had
something like the following:

if(level==10 && object==56)
{ HideObject(); }

The game shipped with this in.
Maybe a year later, an artist using

our engine came to us very frustrated
about why an object in their level was
not showing up after exporting. The
level they had a problem with resolved
to level 10. I wonder why?

Stack vs. Heap –Torbjörn Gyllebring
Stack allocation is much faster than
heap allocation since all it really does is
move the stack pointer. Using memory
pools, you can get comparable perfor-
mance out of heap allocation, but that
comes with a slight added complexity
and its own headaches.

Also, stack vs. heap is not only a
performance consideration; it also tells
you a lot about the expected lifetime
of objects. The stack is always hot, and
the memory you get is much more
likely to be in cache than any far heap
allocated memory.

  37

The downside of the stack is that it is
actually a stack. You can’t free a chunk
of memory used by the stack unless it
is on top of it. There’s no management
— you push or pop things on it. On
the other hand, the heap memory is
managed: it asks the kernel for memory
chunks, maybe splits them, merges
them, reuses them, and frees them. The
stack is really meant for fast and short
allocations.

I’m a Programmer, Not an Artist –
Damian Connolly
For indie/solo developers who are
working on an iPhone or Android game
on their own, while you’re looking for
an artist, you should be developing
your game at the same time. Use pro-
grammer art, stand-ins, free sprites —
anything. Most of the time, before even
thinking about final assets, I just want
something up and running quickly to
see if it’s fun. Prototype the crap out of
it and find the game. Then, when the
gameplay’s locked down, you can start
putting in the proper art. Doing it the
other way around leads to lost money,
and work that needs to be redone mul-
tiple times, which aside from harming
your project, sucks your motivation to
finish it (and if you’re making a game
to get a job, showing that you can finish
a project is a good thing). Another
tip if you’re lacking upfront finance
is to find a freelance game artist who
will accept a revenue sharing deal, e.g.

typically something like 30% of game
revenue, payable once it gets published
to the AppStore.

Remove Unnecessary Branches
–tenpn
On some platforms and with some
compilers, branches can throw away
your whole pipeline, so even insignifi-
cant if() blocks can be expensive.

The PowerPC architecture (PS3/
x360) offers the floating-point select
instruction, fsel. This can be used in
the place of a branch if the blocks are
simple assignments:

float result = 0;
if(foo > bar){ result = 2.0f; }
else { result = 1.0f; }

Becomes:

float result = fsel(foo-bar, 2.0f,
1.0f);

When the first parameter is greater
than or equal to 0, the second param-
eter is returned, else the third. The
price of losing the branch is that both
the if{} and the else{} block will
be executed, so if one is an expensive
operation or dereferences a NULL
pointer, this optimization is not suit-
able. Sometimes your compiler has
already done this work, so check your
assembly first.

38  PROGRAMMING

Hack the Stack –Steve DeFrisco
I was one of a few interns at IMAGIC
in 1982-83. We were all doing Intel-
livision carts. One of the programmers
had to leave to go back to school, and I
was chosen to fix the random crash bug
in his game. It turned out to be a stack
overflow in the timer interrupt handler.
Since the only reason for the handler
was to update the *display* of the on-
screen timer, I added some code to test
the depth of the stack at the beginning
of the interrupt routine. If we were in
danger of overflowing the stack, return
without doing anything. Since the
handler was called multiple times per
second, the player never noticed, and
the crash was fixed.

Meet My Dog, “Patches” –Mick West
There’s an old joke that goes some-
thing like this:

Patient: “Doctor, it hurts when I do
this.”

Doctor: “Then stop doing it.”

Funny, but are these also wise words
when applied to fixing bugs? Con-
sider the load of pain I found myself
in when working on the port of a 3D
third person shooter from the PC to
the original PlayStation.

Now, the PS1 has no support
for floating point numbers, so we
were doing the conversion by basi-
cally recompiling the PC code and

overloading all floats with fixed point.
That actually worked fairly well, but
where it fell apart was during collision
detection.

The level geometry that was sup-
plied to us worked reasonably well in
the PC version of the game, but when
converted to fixed point, all kinds of
seams, T-Junctions, and other prob-
lems were nudged into existence by
the microscopic differences in values
between fixed and floats. This problem
would manifest itself in one case with
the main character touching a particu-
lar type of door in a particular level in
a particular location; rather than fix
the root cause of the problem, I simply
made it so that if he ever touched the
door, then I’d move him away, and
pretend it never happened. Problem
solved.

Looking back I find this code quite
horrifying. It was patching bugs and
not fixing them. Unfortunately the real
fix would have been to go and rework
the entire game’s geometry and colli-
sion system specifically with the PS1
fixed point limitations in mind. The
schedule was initially aggressive, and
since we always seemed close to finish-
ing, the quick patch option won over
against a comprehensive (but expen-
sive) fix.

But it did not go well. Hundreds of
patches were needed, and then the
patches themselves started causing
problems, so more patches were added

  39

to turn off the patches in hyper-specific
circumstances. The bugs kept coming,
and I kept beating them back with
patches. Eventually I won, but at a
cost of shipping several months behind
schedule, and working 14 hour days for
all of those several months.

That experience soured me against
“the patch.” Now I always try to dig
right down to the root cause of a bug,
even if a simple, and seemingly safe,
patch is available. I want my code to be
healthy. If you go to the doctor and tell
him “it hurts when I do this,” then you
expect him to find out why it hurts,
and to fix that. Your pain and your
code’s bugs might be symptoms of
something far more serious. The moral:
treat your code like you would want a
doctor to treat you; fix the cause, not
the symptoms.

Identity Crisis –Noel Llopis
This scene is familiar to all game
developers: It’s the day we’re sending
out the gold candidate for our Xbox
1 game. The whole team is playtest-
ing the game all day long, making sure
everything looks good. It’s fun, it’s
solid, it’s definitely a go in our minds.

In the afternoon, we make the last
build with the last few game-balancing
tweaks, and do one last playthrough
session when disaster strikes: the game
crashes hard! We all run to our work-
stations, fire up the debugger, and try
to figure out what’s going on. It’s not

something trivial, like an assert, or even
something moderately hard to track
down, like a divide by zero. It looks like
memory is garbage in a few places, but
the memory reporting comes out clean.
What’s going on?

One dinner and many hours later, our
dreams of getting out on time shat-
tered, we manage to track it down to
one data file being loaded in with the
wrong data. The wrong data? How’s
that possible? Our resource system
boiled down every asset to a 64-bit
identifier made out of the CRC32 of
the full filename and the CRC32 of all
the data contents. That was also our
way of collapsing identical resource
files into a single one in the game. With
tens of thousands of files, and two years
of development, we never had a con-
flict. Never.

Until now, that is.
It turns out that one of the innocent

tweaks the designers had checked in
that afternoon made it so a text file had
the exact same filename and data CRC
as another resource file, even though
they were completely different!

Our hearts sank to our feet when
we recognized the problem. There’s
no way we could change the resource
indexing system in such a short period
of time. Even if we pulled an all-
nighter, there was no way to know for
sure that everything would be stable in
the morning.

40  PROGRAMMING

Then, as quickly as despair swept
over us, we realized how we could
fix this on time for the gold candi-
date release. We opened up the text
file responsible for the conflict, added
a space at the end, and saved it. We
looked at each other with huge grins
on our faces and said:

“Ship it!”
The extra space meant the CRC32

checksum of the text file was altered
and therefore no longer conflicted with
the other resource.

HexEdit to the Rescue
–Ken Demarest
Back on Wing Commander 1 we
were getting an exception from our
EMM386 memory manager when we
exited the game. We’d clear the screen
and a single line would print out, some-
thing like “EMM386 Memory manager
error. Blah blah blah.” We had to ship
ASAP. So I hex edited the error in the
memory manager itself to read “Thank
you for playing Wing Commander.”

8-bit Audio Stomper –Toonse
For a launch product of a certain
console I had a nasty bug report from
QA that took 20+ hours to reproduce.
Finally (with 24 hours left to go to hit
console launch) tracked it down to
some audio drivers in the firmware that
were erroneously writing 1 random
byte “somewhere” at random times
where the “somewhere” was always in

executable code space. I finally figured
out that any given run of the game
that “somewhere” was always the same
place, luckily. 1st party said sorry, can’t
fix it in time as we don’t know why it’s
being caused! So I shipped that game
with stub code at the very start of main
that immediately saved off the 1 byte
from the freshly loaded executable in
the place I knew it would overwrite
for that particular version of the exe.
There was then code that would run
each frame after audio had run and
restore that byte back to what it should
be just in case it had been stomped
that frame. Good times! We hit launch.

To this day I still feel very, very dirty
about this hack, but it was needed to
achieve the objectives and harmed no
one.

Rainy Day Server Pool –Potatolicious
I used to work for a company that had
a horrific hardware requisition policy.
If your team needed a server, it had
to go through a lengthy and annoying
approvals process — and even then,
it took months before Infrastructure
would actually provide said servers.

In other words, when a project gets
handed down from above to launch
in, say, 3 months, there’s no way in
hell you can get the servers requisi-
tioned, approved, and installed in that
time. It became standard practice for
each team to slightly over-request
server capacity with each project and

  41

throwing the excess hosts into a rainy
day pool, immediately available and
repurposeable as required.

New servers will still get requested
for these projects, but since they took
so long to approve, odds are they’d go
right into the pool whenever they actu-
ally arrived, which sometimes took up
to a year.

Of course, it was horrifyingly inef-
ficient. Just on my team alone I think
we had easily 50 boxes sitting around
doing nothing (and powered on to
boot) waiting to pick up the slack of a
horrendously broken bureaucracy.

Bit Shifting Magic –Steven Pigeon
In order to avoid stalls in the proces-
sor pipeline due to branching, one
can often use a branchless equivalent,
that is, code transformed to remove
the if-then-else’s and therefore jump
prediction uncertainties. For example,
a straightforward implementation of
abs() in C might be:

inline int abs(int x)
{
 return (x<0) ? -x : x;
}

Which is simple enough but contains
an inline if-then-else. As the argument,
x, isn’t all that likely to follow a pattern
that the branch prediction unit can
detect, this simple function becomes
potentially costly as the jump will be
mispredicted quite often.

How can we remove the if-then-else,
then? One solution is to use the right
shift operator (>>) and the bitwise
XOR operator (^) as following:

inline int abs_no_branch(int x)
{
 int m = (x >> (8 *
sizeof(int)-1));
 return ((x ^ m) - m);
}

Where the expression (8 *
sizeof(int) - 1) evaluates to 15, 31,
or 63 depending on the size of integers
on the target computer. n

Harvey Green has spent the past few years
developing in .NET and C# for the Oil & Gas
and related industries. He believes that core
language skills plus good domain knowledge
has been the key to most of the projects he’s
worked on.

Reprinted with permission of the original author.
First appeared in hn.my/game (dodgycoder.net)

http://hn.my/game

42  PROGRAMMING

Deploying web applications is
hard. No shiny continu-
ous deployment talk and

no DevOps coolness can change that.
Or to use DevOp Borat’s words: “Is
all fun and game until you are need of
put it in production.” There are some
mistakes I see people making again and
again, so I’d like to address them here.

My background
Before I start preaching, let me tell you
a bit about me and what I do in order
to give you some perspective from
which I’m writing.

I work for a German web hoster
and domain registrar. And I’m deploy-
ing Python-based applications all the
time. Most parts of our infrastructure
are built using Python. And those that
aren’t, will be eventually.

The sizes range from tiny glue
to mission-critical APIs. We have
legacy Pylons [pylonsproject.org],
new Pyramid, some Django, & a lot
of Twisted apps [twistedmatrix.com].
And everything is seasoned with a hint
of Celery [celeryproject.org].

So if I say “application,” I don’t mean
just some Django CRUD front end.
Python lives in all layers here. And all
layers have to be deployed somehow.

Deploying so many diverse appli-
cations requires solid and consistent
deployment standards if you don’t
want to go crazy. The main mantra is
to go for simple solutions, not for easy
ones. Something that is easy now, can
become a major PITA down the road.

By Hynek Schlawack

Python Deployment
Anti-Patterns

http://pylonsproject.org
http://twistedmatrix.com
http://celeryproject.org

  43

Don’t use ancient system
Python versions
Every time someone whines about lack
of support for Python 2.4 in recent
packages, I hear Kenneth Reitz saying:

Python 2.4 is not supported. It came
out 8 years ago. That’s older than
YouTube. Upgrade.

If you’re serious about using Python
you should be prepared to roll your
own RPMs/DEBs. We’re even running
RHEL 4 on some of our servers; but
we’re a Python company, so we use
the best thing we can get — even if it
means extra work.

We also have to compile our own
Apaches and MySQLs for our cus-
tomer servers (we don’t use any of
them for our own systems, but our
customers demand a solid LAMPstack)
because we need that fine-grained con-
trol. Why should Python be an excep-
tion? Rolling an own DEB/RPM is a lot
less of a nuisance than writing code for
Python < 2.6.

This works both ways. It’s entirely
possible that you have some mission-
critical web app that isn’t compatible
with Python newer than 2.4. Are you
going to install a single server with an
ancient OS, just to accommodate? Key
infrastructure must not be dictated by
third parties.

On the other hand I’m not saying
that you have to compile Python

yourself! Oneiric and later have Python
2.7 on board — there’s absolutely no
reason to build it for yourself. The
stress is on “ancient,” not on “system” in
this caption.

Use virtual environments
Gentlepeople, if you’re deploying soft-
ware, always use virtualenv. Actually,
the same goes for local development:
look into virtualenvwrapper which
makes handling them a breeze. So
never install into your global site pack-
ages! The only exception is the afore-
mentioned virtualenv, which in turn
installs pip in each environment it
installs to.

Test your software against certain
versions of packages, pinpoint them
using pip freeze and be confident that
the identical Python environment is
just a pip install -r requirements.
txt away. For the record, I split up my
requirement files; more on that in the
next installment.

Also, use real version pinning
like package==1.3. Don’t do pack-
age>=1.3, it will bite you eventu-
ally, just as it has bitten me and
many others.

Never use Python packages from
your distribution
This one is in fact an extreme version
of the previous anti-pattern.

First of all, there’s no reason to suc-
cumb to a dictate of your distribution

44  PROGRAMMING

which version of a package to use. They
don’t know your application. Maybe
you need the latest version, maybe you
need a slightly older one.

1.	If I write and test software, I do it
against certain packages. Packages
tend to change APIs, introduce bugs,
etc.

2.	My software is supposed to run on
any UNIXy platform as long as the
Python it’s written against is present.

What if the next Ubuntu ships with
a different SQLAlchemyby default?
Do I have to fix all my applications
before upgrading our servers? Or what
if I need to deploy an app to an older
server? Do I have to rewrite it so it
runs with older packages? I prefer
not to.

I really wish the Linux distributions
wouldn’t ship anything more than the
Python interpreter and virtualenv. Any-
thing else just leverages bad behavior.

The only good they may be doing
is automatically updating packages
with security vulnerabilities that you
may have missed. That said, I’m con-
vinced that if you deploy software to
the net, you have the responsibility to
monitor them yourself anyway. Relying
on your distribution gives you just a
false sense of security; if your custom-
er’s data gets hacked, they don’t care
that Ubuntu was to slow to issue a
security update.

Don’t run your daemons in a tmux/
screen
It seems to be part of everyone’s evo-
lution to do it, so be the first one to
skip it!

Yes, tmux is full of awesome
(and way better than screen),
but please don’t just ssh on your host
and start the service in a tmux or
screen. You have nothing that brings
the daemon back up if it crashes. You
can’t restart it on 10 servers without
ssh’ing on 10 servers, get the screen
and Ctrl-C it. Granted, it’s easy in the
beginning, but it doesn’t scale and lacks
basic features that simple-to-use tools
have to offer.

My favorite one is supervisord
[supervisord.org]. A definition for a
service looks as simple as:

[program:yourapp]
command=/path/to/venv/bin/guni-
corn_django --config deploy/
gunicorn-config.py settings/produc-
tion.py
user=yourapp
directory=/apps/yourapp

You add the file to /etc/supervi-
sor/conf.d/, make a supervisor-
ctl update and your service is up
and running. It’s a no-brainer and
much easier than juggling rc.d scripts.
Crash recovery and optional web
interface included.

http://supervisord.org

  45

Configuration is not part of
the application
Your production configuration doesn’t
belong in the (same) source repository.
There are configuration management
tools like Puppet [puppetlabs.com]
or Chef [opscode.com/chef] that do
exactly that for you — just better and
more reliably. While installing the
configuration, Puppet can make sure
that the directories always have certain
permissions. Configuration templates
make it perfect for mass deployments.
Some service IP changed? Just fix it in
Puppet’s repo and deploy the changes.
Eventually all services will catch up. If
you want, you can always trigger a run,
for example using a simple Fabric script.

But don’t use Fabric for actual
deployments! This is the perfect exam-
ple of the battle between “simple” and
“easy.” At first, it’s easier to put every-
thing inside of the repo and run a Fabric
script that does a git pull and restarts
your daemon. In the long run, you’ll
regret it like many before you did.

Just to stress this point: I love Fabric
and couldn’t live without it. But it’s
not the right tool for orchestrating
deployments — that’s where Puppet
and Chef step in.

Look into alternatives to Apache +
mod_wsgi setups
Many people go for Apache and mod_
wsgi by default, because everybody has
already heard about Apache.

To me, Apache feels like a big ball
of mud, and I find the modular com-
bination of gunicorn [gunicorn.org]
or uwsgi [hn.my/uwsgi] together with
nginx much more pleasing and easier
to control.

Enough negativity
I don’t claim that I’ve discovered the
sorcerer’s stone. However, I’ve devel-
oped a system for us that proved solid
and simple in the long run.

The trick is to build a debian pack-
age (but it can be done using RPMs
just as well) with the application
and the whole virtualenv inside. The
configuration goes into Puppet, and
Puppet also takes care that the respec-
tive servers always have the latest ver-
sion of the DEB.

The advantage is that such a DEB is
totally self-contained, doesn’t require
having to build tools and libraries on
the target servers, and, paired with
solid Puppet configuration, it makes
consistent deployments over a wide
range of hosts easy, fast, and reli-
able. But you have to do your home-
work first. n

Hynek is a wine-loving software engineer from
Berlin/Germany, creating robust systems for a
living at Variomedia and hacking FOSS for fame
at home. He occasionally blogs at hynek.me
and regularly tweets as @hynek

Reprinted with permission of the original author.
First appeared in hn.my/pydev (hynek.me)

http://puppetlabs.com
http://opscode.com/chef
http://gunicorn.org
http://hn.my/uwsgi
http://twitter.com/hynek
http://hn.my/pydev

46  PROGRAMMING

This is Why You Spent
All that Time Learning

to Program

There’s a standard format for
local TV news broadcasts
that’s easy to criticize.

There’s an initial shock-value teaser
to keep you watching. News stories are
read in a dramatic, sensationalist fash-
ion by attractive people who fill most
of the screen. There’s an inset image
over the shoulder of the reader. Peri-
odically there’s a cutaway to a reporter
in the field; it’s often followed-up with
side-by-side images of the newscaster
and reporter while the former asks a
few token questions to latter. There’s
pretend banter between newscasters
after a feel-good story.

You get the idea. Now what if I
wanted to change this entrenched
structure?

I could get a degree in journalism and
try to get a job at the local TV station.
I’d be the new guy with no experience,
so it’s not likely I could just step-in and
make sweeping reforms. All the other
people there have been doing this for
years or decades, and they’ve got estab-
lished routines. I can’t make dozens
of people change their schedules and
habits because I think I’m so smart. To
be perfectly fair, a drastic reworking of
the news would result in people who
had no issues with old presentation
getting annoyed and switching to one
of the other channels that does things
the old way.

By James Hague

  47

When I sit down to work on a personal
project at home, it’s much simpler.

I don’t have to follow the familiar stan-
dards of whatever kind of app I’m building.
I don’t have to use an existing application
as a model. I can disregard history. I can
develop solutions without people saying
“That’s not how it’s supposed to work!”

That freedom is huge. There are so many
issues in the world that people complain
about, and there’s little chance of fixing the
system in a significant way. Even something
as simple as reworking the local news is out
of reach. But if you’re writing an iOS game,
an HTML 5 web app, a utility that auto-
mates work so you can focus on the cre-
ative fun stuff, then you don’t have to fall
back on the existing, comfortable solutions
that developers before you chose simply
because they, too, were trapped by the
patterns of the solutions that came before
them.

You can fix things. You can make new
and amazing things. Don’t take that ability
lightly. n

James Hague has been Design Director for Red Fac-
tion: Guerrilla, editor of “Halcyon Days: Interviews
with Classic Computer and Video Game Program-
mers,” co-founder of an indie game studio, and a
published photographer. He started his blog “Pro-
gramming in the 21st Century,” in 2007.

Reprinted with permission of the original author.
First appeared in hn.my/spent (dadgum.com)

http://hn.my/spent

48  PROGRAMMING

Faster than C

Judging the performance of pro-
gramming languages, usually C
is called the leader, though For-

tran is often faster. New programming
languages commonly use C as their
reference, and they are really proud to
be only so much slower than C. Few
language designer try to beat C.

What does it take for a language to
be faster than C?

Better Aliasing Information
Aliasing describes the fact that two
references might point to the same
memory location. For example, con-
sider the canonical memory copy (not
memcpy from stdlib.h!):

void* memcopy(void* dst, const
void* src, size_t count) {
 while (count--) *dst++ =
*src++;
 return dst;
}

Depending on the target architec-
ture, a compiler might perform a lot
of optimizations with this code. For

example, on a modern x86 with the
SSE instruction MOVDQU, it could
copy 16 Byte blocks instead of 4 Byte
(sizeof(void*)). Unfortunately, no.
Due to aliasing, dst could for exam-
ple be src+1. In this case, the result
must be the first word *src repeated
count times at dst. The compiler is
not allowed to use MOVDQU due to the
semantics of C.

In C99 the restrict keyword was
added, which we could use here to
encode that src and dst are different
from all other references. This mecha-
nism helps in some cases, but not in
our example.

Fortran semantics say that function
arguments never alias and there is an
array type, where in C arrays are point-
ers. This is why Fortran is often faster
than C. This is why numerical libraries
are still written in Fortran. However, it
comes at the cost of pointer arithmetic.

A language which wants to be faster
than C should provide semantics
where aliasing can be better analyzed
by the compiler.

By Andreas Zwinkau

  49

Push Computation to Compile-Time
Doing things at compile time reduces
the run time. Of course, C compilers
do this for trivial cases like 1+2, where
the addition is already handled at com-
pile time.

However, languages with nice meta-
programming support enable the
programmer to do similar application
specific optimizations. A simple exam-
ple, we could optimize fib(20) to 6765,
without the compiler knowing about
Fibonacci numbers.

For a real example, the Eigen C++
library for linear algebra uses C++
templates to avoid copies and be lazy
about computations. Of course, Lisp is
the grandfather of this technique with
its macro system. For example, there is
a nice anecdote [hn.my/jsobel] about
a student using Scheme for an assign-
ment. Basically, the programmer can
modify the abstract syntax tree during
compilation. The trade-off with such
meta programming features is complex-
ity. Programmers underestimate the dif-
ficulty to write correct macros like they
underestimate the difficulty to write
correct concurrent programs.

A language designer should think
about meta programming. Something
Turing-complete like C++ templates,
seems to be beneficial for performance.

Runtime Optimization
At runtime there is dynamic informa-
tion which is not available to a static

compiler. Any specific example could
be duplicated by a C program, but
usually it is not feasible. The trick of
profile-guided optimizations solves
only a small part of the problem.

What becomes especially easy at
runtime is whole-world optimization.
While this is possible statically, the C
semantics (compilation units) and the
mandatory preprocessor make it diffi-
cult for the compiler. Even Python can
beat C by inlining across file borders.

Of course, there are downsides to
using a JIT and especially in systems
and embedded programming it is not
appropriate. So there might be exam-
ples where Java, C#, or others beat C,
but they do not threaten C’s niche.

Conclusion
Aliasing information is the only one
where I am certain about speed
improvements, because it is impossible
to reach Fortran-speed in C. The other
ideas are more about making it easier to
write faster programs. n

Andreas Zwinkau is a doctoral researcher at
the IPD Snelting since 2010. He is working
on the libFirm compiler within the InvasIC
project. However, this is only true, while he
is not occupied with managing and teaching
students at the KIT, Germany’s finest university
for computer science.

Reprinted with permission of the original author.
First appeared in hn.my/fasterc (beza1e1.tuxen.de)

http://hn.my/jsobel
http://hn.my/fasterc

50  SPECIAL

By Joe Peacock

“That’s Why You Don’t
Have Any Friends.”

Yesterday, I was at the gym. I
was working out, as I am usu-
ally doing while I’m at the

gym. And as it happens over the years
spent going to the same gym, relation-
ships form and people get to know
each other, and groups form and jokes
are shared and camaraderie takes place.
And it was the same this day.

I was talking with a group of folks
who are regularly in during the after-
noons on Saturdays. Among them was
a 14-year-old boy named Bradley (not
his real name). He’s a great kid. He’s
been coming to the gym with his par-
ents for the past two or so years. While
his parents walk around the track
upstairs, he spends his time learning
how to lift weights with us big guys.
When he first started, he was wiry and
awkward. He’s still pretty awkward;

being a teenager and all. But us big
guys set him on a good path to main-
tain a healthy level of fitness.

We were cutting up and laughing.
The guys made fun of me for liking
hockey. “That’s a Canadian sport, isn’t
it?” one asked. “What are you, part
Canadian?”

“Only the part that likes real sports,”
I replied. “And maple syrup.”

“I still don’t get why you don’t like
college football,” another asked. “You’re
in Georgia. SEC is bigger than NFL
here.”

“What can I say?” I asked. “South-
erners like their little league sports. I
prefer watching pros.”

And so it goes, about the same way
every Saturday. The topics change —
what cars are best, what sports are
better than other sports, what teams

SPECIAL

  51

are better than other teams, what
shows are better than other shows
(but never politics or religion — some-
thing you learn really fast in a gym is
to never bring up the two topics most
likely to incite violence in a build-
ing filled with metal bars and heavy
plates). Someone has a divergent
interest, everyone else jumps on it,
and laughs are had. And invariably, the
topic turns to girls.

Husbands laugh about the young
singles and their stories about week-
end endeavors. Singles laugh at the
guys stuck at home with their ball
and chain. Whispers are shared about
which girls in the gym are hot; warn-
ings are issued by the more experi-
enced about the dangers of dating
people from your gym or your job
(short version: it doesn’t matter how
hot the guy or girl is, it’s stupid. Unless
marriage is assured, don’t do it.)

One of the guys asked Bradley if he
had a girlfriend. If there were dirt on
the gym floor, he’d have been kicking it.

“Nah, no girlfriend,” he replied.
“Young strapping lad like you? Non-

sense,” I said, knowing full well that
not only did he not have a girlfriend,
he’d have absolutely no clue what to
do with one if he did because I was
him once. But as a grown up looking
out for a younger kid, you have to act
like it’s completely ridiculous that girls
don’t flock to him. It’s the right thing
to do.

“I asked a girl out to the spring
dance,” he said. He then said something
that hit me hard. “She called me lame
and said, ‘That is why you don’t have
any friends. Because you’re weird.’”

The words rang in my head. Those
exact words — I remembered hearing
them. A lot. He didn’t explain why she
thought he was weird. He didn’t have
to. I knew the feeling very, very well.

“Come on now,” one of the guys said.
“Don’t let her get to you.”

“No, she’s right,” he said. “I don’t
have any friends. Not at school,
anyway.” His face got really sad. “I
really am weird.”

I was weird, back before I real-
ized I wasn’t. And it resulted in some
extremely lonely times in my young
life. My entire elementary and junior
high school tenure was spent with no
friends. In tenth grade, I found my tiny
group of four friends.

I dated the wrong girl (they’re all
wrong, until you find the right one).
The four of us fractured into two
groups of two — Mike and I split off
from Walter and Rod.

Then one day, Mike got tired of
my bullshit and said those words to
me. “That’s why you don’t have any
friends,” he said at very high volume.
He deserved to say it — I’d just told
him to go fuck himself when he tried to
explain why my girlfriend at the time
was screwing someone behind my back.
I called him every name in the book, so

52  SPECIAL

he bailed and joined up with Walter and
Jay while I spent the last few weeks of
high school career. Even the furry had
more friends than I did.

And now, 17 years later, life is fantas-
tic. I belong to a studio full of amazing
people who were all weird, just like
me. I get to meet freaks from across the
nation who all love anime and comics,
just like me. I get to talk to people who
read my weird stories about my weird
life and relate to it because, just like
me, they’re weird.

There are thousands — no, hundreds
of thousands — of us. All weird. All
strange. All over, everywhere.

We all went to school and hated
everyone because they didn’t under-
stand us. We dealt with the bullying
and the isolation and the feeling that
we were the weird ones. You want to
know what’s weird? Spending hun-
dreds of dollars on clothes and shoes
and purses that everyone else thinks
are cool. Spending hours of your life
doing things that everyone else is doing
because it’s cool. Liking the bands that
everyone else likes because you’re a
loser if you don’t.

You want to know what’s weird?
Hiding who you are just to have the
company of people you don’t even like.
That’s weird.

I looked him straight in the eye.
My normally grinning mouth turned
stern. With as serious a tone as I could
muster, I said “Listen to me, okay?

What I’m about to say is something I
want you to take in and think about
and really hold on to.”

He nodded. "Okay,” he said.
“This isn’t just conversation, this is

important,” I said. “You listening?”
He nodded again. “I’m listening,” he

replied with a look that convinced me
that he was.

I took a deep breath. “Right now,
you’re in high school in a small subur-
ban town,” I started.

He nodded.
“Everyone you know looks the same

and acts the same,” I explained. "They
may dress differently from each other
or belong to different crowds, but
they’re all the same. Hipsters, brainiacs,
jocks, so-called “geeks” — they’re all so
caught up with not being left out that
they’re changing who they are to fit
in with whoever it is that will accept
them.

“When you show up and you’re not
like that, it scares them,” I continued.
"They don’t know what to do with
you, because they have no idea what
it’s like to think for themselves. So they
try to make YOU feel like the loser,
because there are more of them doing
what they’re doing than there are of
you. In such a small group of small
minds, the nail that sticks up gets ham-
mered down.

“To them, you are weird,” I said. “But
weird is good. No, screw that — weird
is great! Being weird to someone just

  53

proves that you are being you, which is
the most important thing you can ever
be. There’s nothing wrong with you.
There’s something wrong with them.
They can’t understand what it’s like to
be themselves, much less what it’s like
to be you.”

He smiled a little. “You really think
that?” he asked.

I laughed. “Dude, look at me!” I said.
“I’m 300 pounds of ex-football player
covered in cartoon and comic book
tattoos, who builds websites and tours
the world talking to people about his
anime cel collection. Trust me, I know
all about being weird.”

He shrugged and said, “It just sucks,
you know?”

“Oh, I know,” I said with a smile.
"And here’s the little bit of bad news
— It’s gonna suck for a little while
longer. But one day, you’ll get out of
school and go somewhere besides the
small town you’re in and you’re going
to discover that there are groups of
people just like you — not that they
do what you do or act how you act,
but that they refused to change who
they are to fit in, and that makes them
just like you. And when you find them,
you’re finally going to feel at home.

“It might be college, or it might be
visiting another city. Hell, it might even
be on the internet. But at some point
you’re going to find them. And it’s
going to be great.”

He smiled. “That would be awe-
some,” he said.

“It WILL be awesome!” I replied.
“But until then, it’s going to be lonely
and frustrating. You’re going to do
stupid things thinking it’s going to
impress them or change their opinion
of you, and it won’t, and you’re going
to get sad. Just know that it does end.
It ends the day you realize that you
never wanted to be them in the first
place because they are losers. They lost
the battle to be themselves. You’re the
winner.”

I paused for a second, because it had
just occurred to me that, at some point
during my little motivational speech,
his parents had walked up and were
waiting a short distance behind him. I
presumed it was to give him enough
space to let the conversation be his
own, but I knew they had heard me
because when I looked at them, they
both nodded and smiled.

So I put the cap on the whole thing.
“And I know your parents are right
there, but I’m going to say it anyway:
Fuck. Them.”

I kept my eyes on him, but could see
just behind him that his mom reacted
a little to my vulgarity. His dad placed
his hand on her shoulder and just let it
be.

The guys in the group all nodded
and agreed with me and began talk-
ing to him about their perspectives
on the situation (which, in previous

54  SPECIAL

conversations over the years, I knew to
be similar to mine). His parents came
up to me and thanked me for talking to
him.

“He just thinks the world of you guys,”
his mom said. “He talks about coming
here all the time to work out with you.”

“He really needed to hear that,” his
dad said. “We try to tell him that high
school is just that way, but you know
how it is...”

“No teenager wants to listen to his
parents,” I said. “Hell, I’m an adult and I
still don’t.”

They both laughed.
“He’s a great kid,” I said. “He’s going to

be just fine in a few years.”
“Well, thank you,” the dad said. “It

means a lot.”
“Hey,” I said with a shrug, “That’s what

we’re here for. We’re his friends.” n

Joe Peacock is an author, journalist and Art of
Akira guy. He has written two books, Mentally
Incontinent (2005) and Mentally Incontinent
(2009). He also owns the world’s largest private
collection of production art from the film Akira.

Reprinted with permission of the original author.
First appeared in hn.my/friends (joethepeacock.blogspot.com)

http://hn.my/friends

  55

http://paymo.biz

56  SPECIAL

By Tommy MacWilliam

What I’ve Learned
about Smart People

Going to Harvard means I
have the amazing opportu-
nity to be around a lot of

smart people. Now, when I say “smart
people,” I don’t mean that guy who
always wins trivia night. I mean blaz-
ingly intelligent individuals who are
regarded as the pre-eminent scholars in
their field. It’s pretty amazing to pass
by Turing Award winners and leading
political science scholars grabbing a
sandwich.

Before I go anywhere, let me make
one thing clear: I am not one of these
smart people. This is perhaps the big-
gest lesson I’ve learned after 3 years
here. There is an absolutely incred-
ible amount of smart people in the
world, and I can name a whole bunch
of students and professors alike who I
know for a fact I will never ever be as
smart as, no matter how hard I try. But

honestly, that’s okay — I don’t need
to be (and perhaps that’s a story for
another day). What that does mean,
though, is that I would be doing a dis-
service to the ever-so-generous Finan-
cial Aid Office if I didn’t learn from
them. I don’t mean learning in a lec-
ture hall, but I refer to a more personal
sense of learning. What is it that sepa-
rates a “smart” person from me? How
do they conduct themselves? What
drives them?

I can of course make no authorita-
tive claims here, but I have noticed
one overarching theme among smart
people: they ask questions. When
someone explains something new to
me, I usually just nod my head like I
know what they’re talking about. If
I don’t understand something, I just
Google it later. After all, I don’t want
this person to think I’m a moron.

  57

Smart people are different. If they
don’t understand something, or even if
they think they understand something,
they ask questions. I distinctly remem-
ber, as an immature and perhaps arro-
gant freshman, a guest lecturer in one
of my classes. After explaining what I
thought was a straightforward concept,
the guest lecturer asked if anyone had
any questions. Looking around the
room, every student simply nodded,
indicating everything was clear. A ques-
tion, however, came from a tenured
professor who had undoubtedly been
exposed to the material before. At the
time, I thought nothing of it and per-
haps even thought that I was smarter
than the professor because I under-
stood a concept he/she didn’t. Now, I
am confident that this professor did not
ask the question just to make the guest
lecturer feel better, to start a discussion,
or anything else. The intonation of the
question and the intensity with which
the professor listened to the response
definitively suggested that the profes-
sor’s question was genuine and that the
answer was of great importance.

Based on the research and findings
of so many of the students and profes-
sors here, it’s clear that this trend is no
accident. Not only do smart people ask
questions when they don’t understand
something, but they also ask questions
when the world thinks it understands
something. Smart people challenge the

very limit of human understanding, and
they push the envelope of what’s pos-
sible farther than many people would
argue it’s meant to be pushed. Smart
people don’t take claims at face value,
and smart people don’t rest until they
find an explanation they’re comfortable
accepting and understanding.

Smart people challenge everything.
(You know who taught me that? A
smart person.)

Maybe someday, people will call me
a smart person. For now, I’m going to
keep asking them questions. n

Tommy is a Computer Science major at Har-
vard University known for his affinity for JavaS-
cript. With a passion for promoting innova-
tion, Tommy loves teaching CS courses and
empowering students to build killer apps. He
also loves cupcakes.

Reprinted with permission of the original author.
First appeared in hn.my/smart (tommymacwilliam.com)

http://hn.my/smart

58  SPECIAL

I am widely credited as the inventor
of the <blink> tag. For those of you
who are relatively new to the Web,

the <blink> tag is an HTML command
that causes text to blink, and many,
many people find its behavior to be
extremely annoying. I won’t deny the
invention, but there is a bit more to the
story than is widely known.

Back in 1994, I was a founding engi-
neer at Netscape, and prior to that I
had written the Lynx browser, which
predated all of the other popular
browsers at that time. Lynx had been
and still is a text-only browser and is
commonly used in a console window
on UNIX machines. At Netscape we
were building software that used a
graphical user interface and could
express vastly more text styles and lay-
outs as well as images and other media.
We spent a lot of time thinking about

the future of the web and new tech-
nologies that would enable new classes
of documents, applications, and uses. A
few examples were HTML tables, SSL
for secure communications, plugins for
extensions, and JavaScript to enable
dynamic HTML.

Sometime in late summer I took a
break with some of the other engi-
neers and went to a local bar on Castro
Street in Mountain View. The bar was
the St. James Infirmary and it had a 30
ft Wonder Woman statue, among other
interesting things. At some point in the
evening I mentioned that it was sad
that Lynx was not going to be able to
display many of the HTML extensions
that we were proposing. I also pointed
out that the only text style that Lynx
could exploit given its environment
was blinking text. We had a pretty
good laugh at the thought of blinking

The Origins of the
<Blink> Tag

By Lou Montulli

  59

text and talked about blinking this and
that and how absurd the whole thing
would be. The evening progressed
pretty normally from there, with a fair
amount more drinking and me meeting
the girl who would later become my
first wife.

Saturday morning rolled around and
I headed into the office only to find
what else but blinking text. It was on
the screen blinking in all its glory and
in the browser. How could this be, you
might ask? It turns out that one of the
engineers liked my idea so much that
he left the bar sometime past mid-
night, returned to the office, and imple-
mented the blink tag overnight. He
was still there in the morning and quite
proud of it.

At the time there were 3 versions
of the browser that ran on UNIX,
Windows, and Mac operating systems.
For a short 12 hours the blinking was
constrained only to the UNIX version,
but it didn’t take long for the blinking
to spread to Windows and then Mac. I
remember thinking that this would be
a pretty harmless Easter egg; that no
one would really use it, but I was very
wrong. When we released Netscape
Navigator 1.0 we did not document
the blink functionality in any way, and
for a while all was quiet. Then some-
where, somehow the arcane knowledge
of blinking leaked into the real world
and suddenly everything was blinking.
“Look here,” “buy this,” “check this out”

— all blinking. Large advertisements
blinking in all their glory. It was a lot
like Las Vegas, except it was on my
screen, with no way of turning it off.

In the end, much was said — most of
it in the form of flaming posts to vari-
ous discussion boards, and the <blink>
tag will probably be remembered as
the most hated of all HTML tags. I
would like to publicly state that at no
time did I actually write code or even
seriously advocate the <blink> tag. It is
true that I put forth the initial inspira-
tion, but it really was merely a thought
experiment. I am not going to name
any names of the people who coded
the dastardly deed. If they wish to step
forward, they will need to do it them-
selves. In the end, the thing that I am
truly sad about is that Lynx never did
get to blink. I am also sad to report that
the St James Infirmary burned to the
ground in 1997. It was a great place to
hang out and will be missed.

<blink> on,
:lou n

Lou Montulli is a programmer who is well
known for his work in producing web browsers.
He co-authored a text web browser called Lynx
and programmed the networking code for the
first versions of the Netscape web browser. He
is currently working on a new Enterprise class
cloud storage service at a company named
Zetta.

Reprinted with permission of the original author.
First appeared in hn.my/blink (montulli.org)

http://hn.my/blink

http://memset.com
http://memset.com
http://hn.my/codeschool
http://hn.my/codeschool

  61

http://memset.com
http://memset.com
http://hn.my/codeschool
http://hn.my/codeschool

	FEATURES
	On Entrepreneurship
	How To Train Your Robot

	STARTUPS
	Why You’ll Always Think Your Product Is Shit
	How I Tricked Myself into Being Awesome
	The Psychology of Tackling Hard Problems
	What Good is Experience?

	PROGRAMMING
	How to Build a Naive Bayes Classifier
	Coding Tricks of Game Developers
	Python Deployment Anti-Patterns
	This is Why You Spent All that Time Learning to Program
	Faster than C

	SPECIAL
	“That’s Why You Don’t Have Any Friends.”
	What I’ve Learned about Smart People
	The Origins of the <Blink> Tag

